• Title/Summary/Keyword: Vibration-proof

Search Result 75, Processing Time 0.023 seconds

Biomimetic Gyroscope Integrated with Actuation Parts of a Robot Inspired by Insect Halteres (평형곤을 모사한 생체모방형 구동부 일체형 각속도 센서)

  • Jeong, Mingi;Kim, Jisu;Jang, Seohyeong;Lee, Tae-Jae;Shim, Hyungbo;Ko, Hyoungho;Cho, Kyu-Jin;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.705-709
    • /
    • 2016
  • Micro-electro-mechanical systems (MEMS) gyroscopes are widely used in various robot applications. However, these conventional gyroscopes need to vibrate the proof mass using a built-in actuator at a fixed resonance frequency to sense the Coriolis force. When a robot is not moving, the meaningless vibration of the gyroscope wastes power. In addition, this continuous vibration makes the sensor vulnerable to external sound waves with a frequency close to the proof-mass resonance frequency. In this paper, a feasibility study of a new type of gyroscope inspired by insect halteres is presented. In dipterous insects, halteres are a biological gyroscope that measures the Coriolis force. Wing muscles and halteres are mechanically linked, and the halteres oscillate simultaneously with wing beats. The vibrating haltere experiences the Coriolis force if the insect is going through a rotational motion. Inspired by this haltere structure, a gyroscope using a thin mast integrated with a robot actuation mechanism is proposed. The mast vibrates only when the robot is moving without requiring a separate actuator. The Coriolis force of the mast can be measured with an accelerometer installed at the tip of the mast. However, the signal from the accelerometer has multiple frequency components and also can be highly corrupted with noise, such that raw data are not meaningful. This paper also presents a suitable signal processing technique using the amplitude modulation method. The feasibility of the proposed haltere-inspired gyroscope is also experimentally evaluated.

A Study for Stamping of Patchwork with Resistance Spot Weld (저항 점용접에 의한 실러 패치워크 적용 판재 프레스 성형 연구)

  • Lee, Gyeong-Min;Jung, Chan-Yeong;Song, Il-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.25-31
    • /
    • 2018
  • Recently, research on the development of lightweight vehicle bodies is increasing continuously as a response to fuel economy regulations. To reduce the weight of a vehicle body, a conventional steel plate has been substituted by light weight material with high specific strength and the jointing of multi-materials is generally applied. On the other hand, the customer's demand for safety and emotional quality in NVH (Noise, Vibration and Harshness) is becoming increasingly important. Therefore, a light weight with proper strength and NVH quality is needed. In the view of light weighting and NVH quality, the application of a vibration proof steel plate can be an effective solution but the formability of a sandwich panel is different with a conventional steel sheet. Therefore, careful analysis of formability is required. This study aims to characterize the formability of a sandwich high-strength steel plate. The high-strength steel plates of different thicknesses with resistance spot welding and sealer bonding were analyzed using forming limits diagram through a cup drawing test.

Sparsity-constrained Extended Kalman Filter concept for damage localization and identification in mechanical structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter;Loffeld, Otmar
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.741-749
    • /
    • 2018
  • Structural health monitoring (SHM) systems are necessary to achieve smart predictive maintenance and repair planning as well as they lead to a safe operation of mechanical structures. In the context of vibration-based SHM the measured structural responses are employed to draw conclusions about the structural integrity. This usually leads to a mathematically illposed inverse problem which needs regularization. The restriction of the solution set of this inverse problem by using prior information about the damage properties is advisable to obtain meaningful solutions. Compared to the undamaged state typically only a few local stiffness changes occur while the other areas remain unchanged. This change can be described by a sparse damage parameter vector. Such a sparse vector can be identified by employing $L_1$-regularization techniques. This paper presents a novel framework for damage parameter identification by combining sparse solution techniques with an Extended Kalman Filter. In order to ensure sparsity of the damage parameter vector the measurement equation is expanded by an additional nonlinear $L_1$-minimizing observation. This fictive measurement equation accomplishes stability of the Extended Kalman Filter and leads to a sparse estimation. For verification, a proof-of-concept example on a quadratic aluminum plate is presented.

A Study on Improving the Impact Force of Impact Hammer Drill (충격햄머드릴의 타격력 향상을 위한 연구)

  • 김재환;정재천;박병규;백복현
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.669-679
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism and an experimental comparison of the numerical simulation results was followed. Optimization of the impact mechanism was also performed. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder including the friction force. The friction is considered as a combination of Coulomb friction and viscous damping friction. At the moment of impact, an ideal impact model that uses restitution coefficient is used to calculate the sudden change of the striker motion. The numerically simulated impact force shows a good agreement with the experimental result and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the used design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to manitain normal operation of the hammer drill are considered as constraints. The optimized result show a remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

Effects of Carbon Black on the Fatigue Life, Critical J-Value and Fracture Morphology and a New Estimated Equation for Natural Rubber

  • Kim, Jae-Hoon;Jeong, Hyun-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.915-923
    • /
    • 2004
  • This study investigated the fatigue lives and mechanical properties of the carbon black filled natural rubber for the vibration-proof parts of the railway vehicle and automobile. The carbon blacks were one of the sources of crack nucleation and crack propagation in the rubber matrix, like the cementite and the maganese sulfide in iron matrix. Different kinds of carbon blacks resulted in different fatigue lives, critical J-values, and fracture morphologies. It was noticed that the critical J-value remained almost the same regardless of the length of a pre-crack. In addition, different kinds of carbon blacks generated different fracture morphologies, and microscopic and macroscopic roughnesses. The critical J-value has linear relations to the roughness, and it seemed related to the size distribution of carbon black particles. By reviewing all the experi-mental data, we found the factors that were related to the fatigue lives, and the logarithmic value of the fatigue life could be linearly expressed by the combination of the critical J-value and the macroscopic roughness. We also proposed a new estimative equation of fatigue life.

Development Test of Pyro-Valve for Cryogenic Gaseous Helium in Pressurization System of Launch Vehicle (발사체 가압시스템용 극저온 헬륨가스 파이로밸브 개발시험)

  • Chung, Yong-Gahp;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.293-297
    • /
    • 2009
  • Valves, which are used to supply or block the flow of cryogenic pressurant in the pressurization system of liquid-propellant propulsion system in a launch vehicle, are pneumo-actuated valve, solenoid valve, pyro-valve, etc. Both pneumo-actuated valve and solenoid valve have more complex structure and are heavier than pyro-valve. For this study, a couple of pyro-valves, which are applicable to cryogenic and high-pressure fluid (cryogenic gaseous helium), have a simple structure, and are comparably light, are designed, manufactured, and tested (proof-pressure/leakage tests, performance test, vibration test, helium supply tests).

  • PDF

A Study on the Performance Evaluation of Fitting for Light-gauge Stainless Steel Pipe (경량 스테인리스 강관용 이음쇠의 성능평가에 관한 연구)

  • Nam, Jun-Seok;Park, Joo-Hwan;Min, Kyung-Tak;Kim, Yeob-Rae;Song, Chul-Gang
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.89-97
    • /
    • 2010
  • In recent fire protection system, the pipings should be light weighted, seismic proof and wrought with non-welding method. The light weighted stainless steel pipes and fittings, satisfying these requirements, are already used as a fire protection system in Germany, Netherland, Taiwan, Australia, United States and Japan. Accordingly, performance evaluation tests were carried out to determine whether or not the fittings can be used in the pipings. As the performance evaluation tests, we conducted vibration test, water hammering test, bending test and fire test. With the results of the tests, we concluded that the fittings can be used in the fire protection system, and that the life expectancy of the fittings exceeds that of buildings.

The Development of Balancing Machine Using Hall Effect Sensor (홀 이펙트 센서를 이용한 밸런싱 머신 개발)

  • Jang, In-Hun;Nam, Won-Ki;Oh, Se-Hoon;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.209-214
    • /
    • 2006
  • The eccentricity of the rotor causes a rotary machine to unbalance and the balancing to correct or compensate this is very important not only for dust-proof and anti -noise design but also for stabilization and durability of the rotary machine. In this paper, for developing the balancing machine to find and compensate such eccentricity, we will propose new way of measuring eccentricity using hall effect sensor that is different from the way in a conventional balancing machine. And we will show that it is possible to make balancing machine more compactly and cheaply by experiment results using hall effect sensor to measure eccentricity. Moreover we try to control and monitor the balancing machine by personal computer through serial communication.

Shaking table tests of prestressed damping-isolation units using a spring and rubbers

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Im, Chae-Rim;Won, Eun-Bee
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2022
  • To improve the seismic performance of suspended ceiling structures, various vibration-damping devices have been developed. However, the devices made of metals have a limit in that they cause large deformation and seriously damages the exterior of the suspended ceiling structure from the wall. As a results, their strengthening effect of the suspended ceiling structure was minimal. Thus, this study employed a spring and vibration-proof rubber effectively controlled vibrations without increasing horizontal seismic loads on the ceiling to enhance the seismic resistance of suspended ceiling structures. The objective of the study is to examine the dynamic properties of a seismic damping-isolation unit (SDI) with various details developed. The developed SDI was composed of a spring, embossed rubbers, and prestressed bolts, which were the main factors enhancing the damping effect. The shaking table tests were performed on eight SDI specimens produced with the number of layers of embossed rubber (ns), presence or absence of a spring, prestressed force magnitude introduced in bolts (fps), and mass weight (Wm) as the main parameters. To identify the enhancement effect of the SDI, the dynamic properties of the control specimen with a conventional hanger bolt were compared to those of the SDI specimens. The SDI specimens were effective in reducing the maximum acceleration (Ac max), acceleration amplification factor (αp), relative displacement (δR), and increasing the damping ratio (ξ) when compared to the control specimen. The Ac max, αp, and δR of the SDI specimens with two rubbers, spring, and fps of 0.1fby, where fby is the yielding strength of the screw bolt were 57.8%, 58.0%, and 61.9% lower than those of the conventional hanger bolt specimens, respectively, resulting in the highest ξ (=0.127). In addition, the αp of the SDI specimens was 50.8% lower than those specified in ASCE 7 and FEMA 356. Consequently, to accurately estimate the αp of the SDI specimens, a simple model was proposed based on the functions of fps, stiffness constant of the spring (K), Wm, and ns.

A Study on Seismic Restraint of Korean Type Building Gas Piping (한국형 건축물 가스 배관의 내진 고정장치에 관한 연구)

  • Lim, Geon-Tae;Lim, Sang-Ho
    • Industry Promotion Research
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • This study relates to a fixing device for gas piping installed in a building such as an apartment or a building. The gas piping is fixed to the inside of the housing so as to buffer the gas piping in all directions, thereby relieving vibration caused by an earthquake or an impact, Disclosed is an earthquake-proof fixing device for a gas pipeline that can minimize damages caused by damage to an earthquake and a gas pipeline by preventing damage and breakage. An apparatus for fixing a gas pipe to a bracket provided on a wall or a wall of a building, the apparatus comprising: a housing coupled to a wall or a bracket and coupled to the inside of the housing; a gas pipe penetrating through the housing to fix the gas pipe; The first plate spring includes a first plate spring formed with a plurality of concave-convex portions that are elastically supported in four directions. The first plate spring is screwed to the front surface or the rear surface of the housing. The lower plate is coupled to one end and the other end, And a pair of first adjusting screws for adjusting the elastic force of the spring. Through this study, damage and damage of gas piping due to earthquake or impact can be minimized.