• Title/Summary/Keyword: Vibration velocity

Search Result 1,400, Processing Time 0.024 seconds

High Power Characteristics of $Pb(Y_{2/3}W_{1/3})O_3-Pb(Zr,Ti)O_3$Ceramics ($Pb(Y_{2/3}W_{1/3})O_3-Pb(Zr,Ti)O_3$계 세라믹스의 고출력 특성)

  • ;Kenji Uchino
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.394-399
    • /
    • 1998
  • High power characteristics with vibration velocity were studied in $Pb(Y_{2/3}W_{1/3})O_3-Pb(Zr,Ti)O_3$(PYW-PZT) ceramics by using the constant current method. Young s modulus $Y_0^E$ and mechanical quality factor $Q_m$ are a function of the square of effective vibration velocity \upsilon_0$. The nonlinear proportional constants of the above functions indicate the degree of stability under the vibration level change. The stability of PYW-PZT ceramics estimated by these constants coincides with the results obtained through the heat generation. It was found that $Q_m$ was markedly decreased with increasing the vibration velocity, accompanying a lot of heat generation. The vibration hysteresis and dielectric loss according to the vibration velocity was reduced by doping $Fe_2O_3$to the ceramics. On the contrary, these losses was increased by doping $Nb_2O_5$.

  • PDF

Soil vibration induced by railway traffic around a pile under the inclined bedrock condition

  • Ding, Xuanming;Qu, Liming;Yang, Jinchuan;Wang, Chenglong
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.143-156
    • /
    • 2021
  • Rail transit lines usually pass through many complicated topographies in mountain areas. The influence of inclined bedrock on the train-induced soil vibration response was investigated. Model tests were conducted to comparatively analyze the vibration attenuation under inclined bedrock and horizontal bedrock conditions. A three-dimension numerical model was built to make parameter analysis. The results show that under the horizontal bedrock condition, the peak velocity in different directions was almost the same, while it obviously changed under the inclined bedrock condition. Further, the peak velocity under inclined bedrock condition had a larger value. The peak velocity first increased and then decreased with depth, and the trend of the curve of vibration attenuation with depth presented as a quadratic parabola. The terrain conditions had a significant influence on the vibration responses, and the inclined soil surface mainly affected the shallow soil. The influence of the dip angle of bedrock on the peak velocity and vibration attenuation was related to the directions of the ground surface. As the soil thickness increased, the peak velocity decreased, and as it reached 173% of the embedded pile length, the influence of the inclined bedrock could be neglected.

Vibration Characteristics of the Axially Moving Continuum with Time-Varying Length: Spagetti Problem (축방향으로 이동하며 길이가 변하는 연속체의 진동특성: 스파게티 문제에 응용)

  • 사재천;이승엽;이민형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.385-392
    • /
    • 2001
  • Time-dependent frequency and energy of free vibration of the Spagetti problem, that is the axially moving continuum with time-varying length, are investigated. Exact expressions for the natural frequency and time-varying vibration energy are derived by dealing with traveling waves. When the string length is increased, the vibration period increases, but the free vibration energy varies as a function of both translating velocity and boundary velocity of the continuum. However, when the string undergoes retraction, the vibration energy increases with time, String tension together with non-zero instantaneous velocity at the moving boundary results in energy variation.

  • PDF

A Study on the Evaluation of Shock Vibration by a Medium Characteristics (매질특성에 따른 충격진동평가에 관한 연구)

  • Song, Jeong-Un;Hong, Woong-Ki;Kim, Seung-Kon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.641-649
    • /
    • 2011
  • The ground vibration has effect on the human body and the nearby structure. However, it was very difficult to estimate the damage of structure caused by the vibration. Especially, ground vibration must be estimated on the bottom of structure because it was made up of several mediums. In this study, it was considered about the shock vibration on medium characteristics as calculating the peak particle velocity and analysing the vibration waveform. The results are as follows : Firstly, the correlation coefficient of PPV(Peak Particle Velocity) and SD(Scaled Distance) was very high at the vertical component, which was represented to 0.991 in general ground medium and each 0.989, 0.961, 0.925 in concrete medium. And also, the vibration waveform at the vertical component was very good in all mediums. Secondly, the vibration waveform at the longitudinal component was represented to a great amplitude and phase difference in all mediums. It was considered that the vibration waveform occurred the damping when particle velocity by shock vibration was propagated through other medium. Thirdly, the vibration waveform in concrete medium was represented to variation of amplitude in the order of RC medium, NC=H medium, NC=S medium at the vertical component. It was considered that the particle velocity propagated fast when a medium have a big strength and density.

Plyometrics and vibration: no clear winner on efficacy

  • Hubbard, R. Jeremy;Petrofsky, Jerrold S.;Lohman, Everett;Berk, Lee;Thorpe, Donna
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • Objective: Whole body vibration (WBV) and plyometrics are common training techniques which increase strength, blood flow, and lower body force and power. The effects these techniques have on sedentary population is unknown. It is our aim to assess the effectiveness of WBV and plyometrics on sedentary population. Design: Experimental study. Methods: Twenty-seven sedentary subjects were assigned to either the control group, jumping only group, or jumping with vibration group. Jump height (myotest or vertec), velocity, force, blood lactates, and rating of perceived exertion (RPE). Subjects were measured on the initial, seventh, and eighteenth visits. Control group attended measurements only. Jumping only and jumping with vibration groups performed jumping from a vibrating platform to a surface 7 1/2 inches higher for 3 bouts of 20 seconds. Each subject in jumping only and jumping with vibration groups attended three times per week for six weeks. Vibration was set at 40 Hz and 2-4 mm of displacement. Results: There was no significant change among groups in force, velocity, vertec height, and myotest height. However there was a significant increase in vertec height from initial to final measure (p<0.05) for jumping with vibration group. RPE was significantly higher between control group and jumping with vibration group after intervention (p<0.05). Conclusions: WBV with vibration increased jump height. Jumping with vibration group experienced increased exertion than for controls. WBV with plyometrics had no effect on force, velocity, blood lactates, or calculated jump height. Further studies controlling for initial measure of blood lactates and using an external focus may be necessary to elicit velocity, force and jump height changes.

Critical Velocity of Fluidelastic Vibration in a Nuclear Fuel Bundle

  • Kim, Sang-Nyung;Jung, Sung-Yup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.816-822
    • /
    • 2000
  • In the core of the nuclear power plant of PWR, several cases of fuel failure by unknown causes have been experienced for various fuel types. From the common features of the failure pattern, failure lead time, flow conditions, and flow induced vibration characteristics in nuclear fuel bundles, it is deduced that the fretting wear failure of the fuel rod at the spacer grid position is due to the fluidelastic vibration. In the past, fluidelastic vibration was simulated by quasi -static semi-analytical model, so called the static model, which could not account for the interaction between the rods within a bundle. To overcome this defect and to provide for more flexibilities applicable to the fuel bundle, Tanaka's unsteady model was modified to accomodate the geometrical differences and governing parameter changes during the operations such as the number of rods, pitch to diameter ratio (P/D), spring force, damping coefficient, etc. The critical velocity was calculated by solving the governing equations with the MATLAB code. A comparison between the estimated critical velocity and the test result shows a good agreement. Finally, the level of decrease of the critical velocity due to the reduction in the spring force and reduced damping coefficient due to the radiation exposure is also estimated.

  • PDF

Forced Vibration Analysis of Pipe Conveying Harmonically Excited Fluid (조화 맥동 유체를 포함하는 직관의 강제진동응답 해석)

  • 오준석;정의봉;서영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.277-283
    • /
    • 2003
  • It is well known that the natural frequencies of the pipe come to be lower as internal fluid velocity and pressure increase, and the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So it should be also taken into consideration that the effect of pulsating fluid in pipe design. The research of the piping system vibration due to a fluid pulsation has been studied by many people. But almost is dealt with determining the boundary between stable and unstable region without analyzing forced response in the stable region. In this study, not only stability analysis but also forced response analysis, which is caused by harmonically excited fluid especially, is conducted.

  • PDF

In Vivo Doppler-Based Measurement of Bending Vibration Velocity in Liver Vibrated by Lo7v Frequency Signal (초음파 Doppler법에 의한 비침투적인 생체조직의 진동속도 계측)

  • 박무훈;장윤석
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.407-412
    • /
    • 1997
  • In this paper, we present a new method to diagnose the characteristics of the soft tissue, especially a liver. In order to diagnose the characteristics of a liver, it is necessary to evaluate the propagation delay time and propagation velocity of bending vibration In a liver. For this purpose, we measure the propagation velocity of bending vibration in a liver for low frequency forced vibration using a standard ultrasonic Doppler diagnosis equipment. We have carried out preliminary experiments by using an ultrasonic probe of 3.5MHz and obtained some results. This new measurement method developed here can be applied to new research and medical fields for acoustic non-invasive diagnosis of soft tissue.

  • PDF

The Vibration Analysis of Pipes Conveying Fluid with Several Harmonic Pulsations (여러 개의 조화맥동을 갖는 유체를 운반하는 파이프의 진동 해석)

  • Jeong, Seok-Hyen;Seo, Young-Soo;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1077-1082
    • /
    • 2004
  • It is well known that the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So, many people has studied about the piping system vibration due to a fluid pulsation. But almost guess that fluid has only one hamonic pulsation. Actually, like this case is rare quite. So, in this paper, we consider the vibration analysis of a pipe conveying fluid with several harmonic pulsations and compare the result which considers one hamonic pulsation with the result which considers several harmonic pulsations. And we verify the result in time domain again.

  • PDF

Ride Quality Investigation of Passenger Cars on Different Road Conditions

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.389-396
    • /
    • 2013
  • Objective: The ride qualities of the six passenger cars were evaluated in 4 subjects on the highway and uneven road. The relation between vibration with driving velocity and driving posture were also investigated separately. Background: Ride comfort plays an important role in the vehicle design. Vibration is the one of the principal components associated with ride comfort. Method: The acceleration of the foot, hip and back were measured using B&K accelerometers in this study. The velocity of the passenger cars was maintained at a constant speed of 80km/h on the highway and 40km/h on the uneven road. For evaluating the effects of driving velocity and driving posture on vehicle's vibration level, separate experiments were performed on the highway with 5 different vehicle speeds and 5 different backrest angles, respectively. Results: The overall ride value of the luxury car showed the best result while the smaller car showed the worst value on the highway. On the uneven road the overall ride value level was increased 75~98%. All the vehicles had the SEAT value less than 1. Faster the velocity lowers the SEAT value. The ride quality in terms of vibration gets worst when the backrest angle increased. Conclusion: The smaller car had a first mode at the higher frequency and showed higher vibration level. SEAT value was mostly affected by the seat property not by vehicle. We ranked the luxury car seat had a best vibration reduction quality than others based on SEAT values. When the driving velocity increased, the overall ride values were increased proportionally and the SEAT values were somewhat decreased. Application: Evaluation of whole-body vibration in the passenger car.