• Title/Summary/Keyword: Vibration velocity

Search Result 1,406, Processing Time 0.03 seconds

The Effect of Internal Row on Marine Riser Dynamics (Riser의 내부유체 흐름이 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-90
    • /
    • 1995
  • A mathematical model for the dynamic analysis of a riser system with the inclusion of internal flow and nonlinear effects due to large structural displacements is developed to investigate the effect of internal flow on marine riser dynamics. The riser system accounts fir the nonlinear boundary conditions and includes a steady flow inside the pipe which is modeled as an extensible or inextensible. tubular beam subject to nonlinear three dimensional hydrodynamic loads such as current or wave excitation. Galerkin's finite element approximation and time incremental operator are implemented to derive the matrix equation of equilibrium for the finite element system and the extensibility or inextensibility condition is used to reduce degree of freedom of the system and the required computational time in the case of a nonlinear model. The algorithm is implemented to develop computer programs used in several numerical applications. The investigations of the effect of infernal flow on riser vibration due to current or wave loading are performed according to the change of various parameters such as top tension, internal flow velocity, current velocity, wave period, and so on. It is found that the effect of internal flow can be controlled by the increase of top tension. However, careful consideration has to be given in the design point particularly for the long riser under the harmonic loading such as waves. And it is also found that the consideration of nonlinear effects due to large structural displacements increases the effect of internal flow on riser dynamics.

  • PDF

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Studies on The Free Vibrational Properties of Traditional and Replaceable Species for Sounding Board (향판용(響板用) 관행수종(慣行樹種)과 대체가능수종(代替可能樹種)의 자유진동적(自由振動的) 성질(性質)에 관한 연구(硏究))

  • Kang, Wook;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.48-64
    • /
    • 1988
  • This study was carried out to investigate the free vibrational properties of traditional and replaceable species for sounding board, using piezoelectrical accelerometer and signal analyzer. In the study, the frequency equations of free-free beam carrying a concentrated mass in the transverse vibration and of free-mass beam in the longitudinal vibration were used. The results obtained were as follows. 1. Average values of dynamic modulus of rigidity of Korean commercial species measured were as follows. Paulownia tomatosa (Thunb.) Steudel: $5.590\times10^9\;dyne/cm^2$ Tilia amurensis Rupr.: $5.414\times10^9\;dyne/cm^2$ Macckia amurensis Rupr.: $10.044\times10^9\;dyne/cm^2$ Fraxinus mandshurica Rupr.: $8.876\times10^9\;dyne/cm^2$ Ulmus davidiana var.japonica Nakai: $8.677\times10^9\;dyne/cm^2$ Pinus rigida Miller: $6.33\times10^9\;dyne/cm^2$ Fraxinus rhynchophylla Hance: $4.666\times10^9\;dyne/cm^2$ 2. The ratio of dynamic transverse Young's modulus to dynamic modulus of rigidity, $E_T/G_{LT}$, was 24.922 for Fraxinus rhynchophylla Hance, which was the highest, 7.317 for Paulownia tomentosa (Thunb.) Steudel, which was the lowest among Korean commercial species measured. 3. The value of longitudinal dynamic Young's modulus was about 3.7% and 19.8%, respectively, higher than those of transverse dynamic and static Young's modulus. The value of transverse dynamic Young's modulus was about 15.5% higher than that of static Young's modulus. 4. Predicted value of MOR in terms of correlation coefficient by transverse dynamic Young's modulus was slightly higher than that of static Young's modulus, but no significance was found out. 5. Transverse dynamic Youne's modulus was $(2.002\pm0.288)\times10^{11}\;dyne/cm^2$ for Fraxinus mandshurlca Rupr., which was the highest, $(0.601\pm0.100)\times10^{11}\;dyne/cm^2$ for Paulownia tomentosa (Thunb.) Steudel, which was the lowest among Korean commercial species measured. The sound velocity of sitka spruce was 5,685 m/sec, which was the highest. 6. Internal friction of Paulownia tomentosa (Thunb.) Steudel was shown the lowest value among Korean commercial species, $(8.795\pm1.795)\times10^{-3}$, but was higher than that of sitka spruce, $(7.331\pm0.991)\times10^{-3}$. Internal friction was shown negative correlation with density and dynamic Young's modulus, respectively. 7. K value was affected largely by internal friction and was the highest, $2.225\times10^8$ for Paulownia tomentosa (Thunb.) Steudel and was the lowest, $0.550\times10^8$ for Fraxinus rhynchophylla Hance. K value of Paulownia tomentosa (Thunb.) Steudel was higher than that of sitka spruce and K values of melapi and cottonwood, which have been considered to be replaceable species with sitka spruce in the piano industry, were lower than those of Paulownia tomentosa (Thunb.) Steudel and mill amurensis Rupr.

  • PDF

A case study on variation of the coefficients K and n with proceeding of blasting works at the felsite zone (규장암지역에서 발파공사중 K 및 n의 변화에 대한 연구)

  • 안명석;박종남
    • Explosives and Blasting
    • /
    • v.16 no.4
    • /
    • pp.29-39
    • /
    • 1998
  • A case study was made on in site vibration velocity data collected for two months in the construction area of the Daeduck cultural City Hall. Taegu The geology over the area shows distributions of weathered and some crack developed hornfels of mud-shale in the upper part, underlain by less weathered and hard compact quartzite. For the period of 2 months of blasting event, the vibration velocities were measured and these data were analysed for K and n for three different period the test period, first month and second month. The data for the test period show that K and n are 2464 and 1.621 with the cube root method, and 7154 and 1.791 with the sqare root one, respectively. The data for the first month collected mostly from blasting in the upper hornfels show that K and n are 1668 and 1,492 for the cube root and 1219 and 1,366 for the square root, respectively. Such a significant decrease in the K and n values from the test period through the first month for the weathered and comparatively well crack developed rocks hard and compact lower quartzite, may be due to difference in attenuation of waves propagating through physically different media. Therefore, for more effective safety design and blasting, it seems that it may be n to adopt appropriate K and n values, with getting lower step by step while proceeding the operation. In the meantime, the attenuation rate of K and n together with SD cross point for the cube and square root methods indicates that the cube root one appears to be more applicable than the square root for this area with limited distance(The maximum is 100m).

  • PDF

Evaluation Techniques for Residual Structural Performance of a Reinforced Concrete slab under Fire Damage (화재 피해를 입은 철근콘크리트 슬래브의 잔존 구조성능 평가기법)

  • Choi, Kwang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.588-594
    • /
    • 2020
  • This study proposes non-destructive rebound-hardness and ultrasonic testing methods to more accurately evaluate the residual structural performance of reinforced concrete structures in a fire. Techniques are also proposed to assess the stiffness used in the deflection calculation with natural frequencies obtained by vibration tests. In the compressive strength evaluation using rebound hardness, the residual compressive strength of thick specimens and a larger water/cement (W/C) ratio were shown to be large. The homogeneity of concrete at high temperature compared to ambient temperature conditions was assessed by the velocity of ultrasonic waves that penetrate the concrete, and it followed W/C or thickness of slab makes little different results. To assess the stiffness of fire-damaged slabs and increase in deflection, the natural frequency was measured by vibration tests and incorporated into the equation of the stiffness. The application of this technique to the slab experiment showed that it can be a very reasonable evaluation technique. In addition, to evaluate the residual strength of a member after fire, a test of the strength of a component was carried out during and after heating.

해상풍속측정용 마스트의 충격해석에 관한 연구

  • Lee, Gang-Su;Kim, Man-Eung;Son, Chung-Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.108-108
    • /
    • 2009
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in wind met mast on impact of barge. The collision between wind met mast and barge is generally a complex problem and it is often not practical to perform rigorous finite element analyses to include all effects and sequences during the collision. LS-dyna generally purpose explicit finite element code, which is a product of ANSYS software, is used to model and analyze the non-linear response of the met mast due to barge collision. A significant part of the collision energy is dissipated as strain energy and except for global deformation modes, the contribution from elastic straining can normally be neglected. On applying impact force of a barge to wind met mast, the maximum acceleration, internal energy and plastic strain were calculated for each load cases using the finite element method and then compare it, varying to the velocity of barge, with one varying to the thickness of rubber fender conditions. Hence, we restrict the present research mainly to the wind met mast and also parametric study has been carried out with various velocities of barge, thickness of wind met mast, thickness and Mooney-Rivlin coefficient of rubber fender with experimental data. The equation of motion of the wind met mast is derived under the assumption that it was ignored vertical movement effect of barge on sea water. Such an analyzing method which was developed so far, make it possible to determine the proper size and material properties of rubber fender and the optimal moving conditions of barge, and finally, application method can be suggested in designing process of rubber fender considering barge impact.

  • PDF

Clean Room Structure, Air Conditioning and Contamination Control Systems in the Semiconductor Fabrication Process (반도체 웨이퍼 제조공정 클린룸 구조, 공기조화 및 오염제어시스템)

  • Choi, Kwang-Min;Lee, Ji-Eun;Cho, Kwi-Young;Kim, Kwan-Sick;Cho, Soo-Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.202-210
    • /
    • 2015
  • Objectives: The purpose of this study was to examine clean room(C/R) structure, air conditioning and contamination control systems and to provide basic information for identifying a correlation between the semiconductor work environment and workers' disease. Methods: This study was conducted at 200 mm and 300 mm semiconductor wafer fabrication facilities. The C/R structure and air conditioning method were investigated using basic engineering data from documentation for C/R construction. Furthermore, contamination parameters such as airborne particles, temperature, humidity, acids, ammonia, organic compounds, and vibration in the C/R were based on the International Technology Roadmap for Semiconductors(ITRS). The properties of contamination control systems and the current status of monitoring of various contaminants in the C/R were investigated. Results: 200 mm and 300 mm wafer fabrication facilities were divided into fab(C/R) and sub fab(Plenum), and fab, clean sub fab and facility sub fab, respectively. Fresh air(FA) is supplied in the plenum or clean sub fab by the outdoor air handling unit system which purifies outdoor air. FA supply or contaminated indoor air ventilation rates in the 200 mm and 300 mm wafer fabrication facilities are approximately 10-25%. Furthermore, semiconductor clean rooms strictly controlled airborne particles(${\leq}1,000{\sharp}/ft^3$), temperature($23{\pm}0.5^{\circ}C$), humidity($45{\pm}5%$), air velocity(0.4 m/s), air change(60-80 cycles/hr), vibration(${\leq}1cm/s^2$), and differential pressure(atmospheric pressure$+1.0-2.5mmH_2O$) through air handling and contamination control systems. In addition, acids, alkali and ozone are managed at less than internal criteria by chemical filters. Conclusions: Semiconductor clean rooms can be a pleasant environment for workers as well as semiconductor devices. However, based on the precautionary principle, it may be necessary to continuously improve semiconductor processes and the work environment.

The Effect of Applying Various Tools to the Stiffness and Muscle Tone of Hamstring Muscles (다양한 도구의 적용이 뒤넙다리근의 뻣뻣함과 근 긴장도에 미치는 영향)

  • Hwang, Sunghyun;Kim, Taeho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.223-230
    • /
    • 2020
  • Purpose : The purpose of this study was to examine the effects of tools (i., extracorporeal shock wave therapy, massage gun, and foam roller) on range of motion, muscle tone and pain threshold among patients with hamstring stiffness. Methods : Fourteen participants with hamstrings stiffness were recruited. Interventions were performed 6 times, and each session was for 30 seconds using the three tools. The range of motion, muscle tone, and pain threshold were measured. The order of the use of the three tools was randomly determined. The foam roller was made to move from the bottom of the hip crease to the upper part of the back of the hamstring. Additionally, velocity 5 vibration stimulation was performed on the hamstring using a massage gun. Moreover, vibration stimulation was performed on the hamstring with extracorporeal shock wave therapy 5 minutes, 5 Hz, and 1,500 strokes. The flexibility of the posterior thigh muscle was based on maintaining the knee and hip joints in a 90 ° bend in the supine position. The joint angle of the knee was measured, when the knee was actively extended, at the maximum point where the posterior thigh muscle was stretched. The elasticity of the posterior thigh muscle was measured while the subject was prone and in a relaxed state without any force. Measurements were made at the muscle abdominal area of the semitendinosus muscle of the posterior femur, and the area to be measured was marked with a pen. The measurement of the tenderness threshold of the posterior femur was measured using a tenderness meter(Commander Algometer, J-Tech, USA). The force value at the point at which the pressure sensation change to pain was measured after applying vertical pressure to the posterior femur muscle, which was the halfway point between the ischial tuberosity and the popliteal surface of the subject lying on their stomach. Results : The extracorporeal shock wave therapy increased stiffness and, muscle tone, and caused changes in the pain threshold, whereas the other two tools had no effect on these indices. Conclusion : Extracorporeal shock wave therapy has important effects on range of motion and muscle stiffness and can be used in warmup protocols.