• Title/Summary/Keyword: Vibration test

Search Result 3,750, Processing Time 0.029 seconds

Design and Fabrication of a 2-Axis Waveguide Rotary Joint for a Millimeter-wave (Ka-Band) Multi-Mode Seeker with Low VSWR and Insertion Loss (낮은 정재파비와 삽입손실을 갖는 밀리미터파(Ka 밴드) 복합모드 탐색기용 2-축 도파관 로터리 조인트 설계 및 제작)

  • Song, Sung-Chan;Yoo, Sung-Ryong;Lim, Ju-Hyun;Jung, Yong-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.173-176
    • /
    • 2019
  • In this study, a Ka-band waveguide rotary joint that can be applied to a millimeter-wave seeker is designed and fabricated. The proposed rotary joint maintains a low standing-wave ratio and low-loss characteristics, and has two rotary axes designed to enable azimuth and elevation rotation. The rotary joint is designed as a ridge-waveguide-type mode converter and a ${\lambda}/4$ choke structure to match the electromagnetic wave propagation mode between the spherical and circular waveguides. A performance test using a network analyzer and a high-power transmitter to assess vibration and shock were conducted. Results showed that the rotary joint had a very low standing-wave ratio of less than the maximum of 1.19:1 and an insertion loss of less than 0.80 dB at $F_C{\pm}500MHz$.

Effectiveness of whole body vibratory stimulation for fall prevention in super-aged women: a preliminary randomized trial

  • Kim, Byeong-Soo;Lim, Kang-Uk;Baek, In-Seon;Kim, Min-Kyoung;Kang, Hye-Min;Nam, Gi-Jeong;Lee, Myung-Mo
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • Objective: The aim of this study is to investigate the effects of whole body vibratory stimulation on muscle strength, balance, and fall efficacy among super-aged women. Design: Randomized controlled trial. Methods: Twenty-eight super-aged women over 80 years of age were assigned to either the experimental group (n=14) and control group (n=14). The experimental group received an exercise program that used the whole body vibratory stimulation with a frequency of 30 Hz and amplitude of 3 mm, and the control group received an exercise program without vibratory stimulation. Intervention was provided for 4 weeks, 3 sessions per week, and 30 minutes per session. In order to measure lower extremity muscle strength the 30-second chair stand test (CST) was used. The Berg Balance Scale (BBS) was used to measure dynamic balance. Static balance was measured by tracking the path length, velocity, and area of the center of pressure (CoP). The Falls Efficacy Scale (FES) was used to measure the subjects' fear of falling. Results: Both the experimental and control group demonstrated statistically significant increase in muscle strength, dynamic balance, and fall efficacy (p<0.05). Only the experimental group showed significant improvements in static balance before and after the intervention (p<0.05). The experimental group showed significantly greater improvements in CST, BBS, and CoP (path length, velocity) than control group (p<0.05). Conclusions: Whole body vibratory stimulation exercise is shown to be a safe and appropriate physical therapy intervention method to enhance muscle strength, balance, and fall efficacy of super-aged women.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

Design of Control Logic, and Experiment for Large Torque CMG (대형 토크 제어모멘트자이로의 제어로직 설계 및 실험)

  • Lee, Jong-Kuk;Song, Tae-Seong;Kang, Jeong-Min;Song, Deok-Ki;Kwon, Jun-Beom;Seo, Joong-Bo;Oh, Hwa-Suk;Cheon, Dong-Ik;Park, Sang-Sup;Lee, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2021
  • This paper presents the control logic for the momentum wheel and gimbals in the CMG system. First, the design of the control logic for the momentum wheel is described in consideration of the power consumption and stability. Second, the design of the control logic for the gimbals considering the resonance of the vibration absorber and stability is explained. Third, the measurement configuration for the force and torque generated by the CMG is described. Fourth, the results of the frequency and time response test of the momentum wheel and gimbals are shown. Last, the measurements of the force and the torque generated through the CMG are explained.

A New Approach for Detection of Gear Defects using a Discrete Wavelet Transform and Fast Empirical Mode Decomposition

  • TAYACHI, Hana;GABZILI, Hanen;LACHIRI, Zied
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2022
  • During the past decades, detection of gear defects remains as a major problem, especially when the gears are subject to non-stationary phenomena. The idea of this paper is to mixture a multilevel wavelet transform with a fast EMD decomposition in order to early detect gear defects. The sensitivity of a kurtosis is used as an indicator of gears defect burn. When the gear is damaged, the appearance of a crack on the gear tooth disrupts the signal. This is due to the presence of periodic pulses. Nevertheless, the existence of background noise induced by the random excitation can have an impact on the values of these temporal indicators. The denoising of these signals by multilevel wavelet transform improves the sensitivity of these indicators and increases the reliability of the investigation. Finally, a defect diagnosis result can be obtained after the fast transformation of the EMD. The proposed approach consists in applying a multi-resolution wavelet analysis with variable decomposition levels related to the severity of gear faults, then a fast EMD is used to early detect faults. The proposed mixed methods are evaluated on vibratory signals from the test bench, CETIM. The obtained results have shown the occurrence of a teeth defect on gear on the 5th and 8th day. This result agrees with the report of the appraisal made on this gear system.

Annoyance and sportiness perception of the acceleration sound by the driver and passengers (가속 사운드에 대한 운전자와 탑승객의 성가심과 스포티함 지각)

  • Kim, Seonghyeon;Altinsoy, M. Ercan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.566-570
    • /
    • 2021
  • This study presents a perceptual difference in acceleration sounds of a sporty sedan between the driver and passenger. We found a significant difference in annoyance and sportiness perception according to the acceleration sound level through subjective evaluations. The multimodal reproduction system, which can reproduce the driving image, motion, vibration, and sound, was applied for the test. A subjective experiment was conducted to evaluate the perceived intensity of annoyance and sportiness by varying the acceleration sound level in five steps of 3 dB. The experimental results showed that the driver perceives the acceleration sound less annoying than the passenger at a relatively low sound level. Meanwhile, the driver has perceived the acceleration sound more sporty than the passenger at a relatively high sound level. Moreover, it was found that passengers were 35 % less sensitive to an annoyance than drivers, whereas the driver was 74 % more susceptible to sportiness than passengers according to the sound level change. This finding is expected to be applied as a sound design strategy that differentiates the acceleration sound level in active sound design.

Evaluation of Compaction Quality using High-resolution Terrain Factor and Soil Moisture (고해상 지형정보와 토양수분을 활용한 다짐도 평가)

  • Kim, Sung-Wook;Go, Daehong;Lee, Yeong-Jae;Choi, Eun-Kyeong;Kim, Jin-Young;Kim, Ji-Sun;Cho, Jin-Woo
    • Journal of Environmental Science International
    • /
    • v.31 no.10
    • /
    • pp.869-881
    • /
    • 2022
  • In this study, a field study was conducted to investigate the relationship between high-resolution remote images and the volumetric moisture, and the number of compaction. Changes in the shape of the surface and soil moisture content were observed and correlated with the number of compactions using roller equipment. As the compaction is repeated, the surface is flattened and the terrain curvature decreases and converges to zero. In particular, the tangential curvature changes as the number of compactions increase. Due to soil compaction, the vegetation index changed from a positive to a negative value, and most of the test site area was homogenized with a negative index. This suggests a decrease in porosity and an increase in volumetric water content associated with increasing soil compaction. Soil moisture, measured using a frequency domain reflectometry(FDR) sensor, tends to increase proportionately with the number of vibration compactions, but the correlation between the number of compactions and soil moisture is unclear. This study suggests that while it is necessary to consider the reproducibility of the experiments performed, the compaction quality of the soil can be evaluated using high-resolution terrain factors and soil moisture.

Optimal Design System of Grillage Structure under Constraint of Natural Frequency Based on Genetic Algorithm (고유진동수 제한을 갖는 골조구조의 GA 기반 최적설계 시스템)

  • Kim, Sung Chan;Kim, Byung Joo;Kim, E Dam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • Normal strategy of structure optimization procedure has been minimum cost or weight design. Minimum weight design satisfying an allowable stress has been used for the ship and offshore structure, but minimum cost design could be used for the case of high human cost. Natural frequency analysis and forced vibration one have been used for the strength estimation of marine structures. For the case of high precision experiment facilities in marine field, the structure has normally enough margin in allowable stress aspect and sometimes needs high natural frequency of structure to obtain very high precise experiment results. It is not easy to obtain a structure design with high natural frequency, since the natural frequency depend on the stiffness to mass ratio of the structure and increase of structural stiffness ordinary accompanies the increase of mass. It is further difficult at the grillage structure design using the profiles, because the properties of profiles are not continuous but discrete, and resource of profiles are limited at the design of grillage structure. In this paper, the grillage structure design system under the constraint of high natural frequency is introduced. The design system adopted genetic algorithm to realize optimization procedure and can be used at the design of the experimental facilities of marine field such as a towing carriage, PMM, test frame, measuring frame and rotating arm.

Spinal Cord Infarction after C7 Transforaminal Epidural Steroid Injection Using Dexamethasone (덱사메타손을 이용한 경추 7번 경막 외 스테로이드 주사 후 척수 경색)

  • Lee, Jong Hwa;Kim, Young Sam;Kim, Sang Beom;Lee, Kyeong Woo;Kim, Young Hwan
    • Clinical Pain
    • /
    • v.19 no.2
    • /
    • pp.116-119
    • /
    • 2020
  • Cervical transforaminal epidural steroid injection (TFESI) is commonly performed to provide relief of pain caused by radiculopathy. Intra-arterial injection of particulate steroid or direct needle injury can lead to spinal artery embolism or thrombosis. Also there is a possibility of vascular spasm. To our knowledge, this is the first reported case of spinal cord infarction that occurred after TFESI with non-particulate steroid in Korea. A 47-year-old female patient underwent C7 TFESI at local pain clinic. Injected materials were dexamethasone and mepivacaine. Right after the intervention, she felt muscle weakness and decreased sensation. On physical examination, she had decreased sensation from C4 to T2 dermatome in light touch and pin-prick test. Proprioception and vibration were intact. The motor grades of upper extremities were grade 1. Cervical and thoracic spine MRI was checked. Diffusion-weighted image and apparent diffusion coefficient image showed long extension of spinal cord infarction from C2 to T1 level.

Aeroelastic testing of a self-supported transmission tower under laboratory simulated tornado-like vortices

  • Ezami, Nima;El Damatty, Ashraf;Hamada, Ahmed;Hangan, Horia
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • The current study investigates the dynamic effects in the tornado-structure response of an aeroelastic self-supported lattice transmission tower model tested under laboratory simulated tornado-like vortices. The aeroelastic model is designed for a geometric scale of 1:65 and tested under scaled down tornadoes in the Wind Engineering, Energy and Environment (WindEEE) Research Institute. The simulated tornadoes have a similar length scale of 1:65 compared to the full-scale. An extensive experimental parametric study is conducted by offsetting the stationary tornado center with respect to the aeroelastic model. Such aeroelastic testing of a transmission tower under laboratory tornadoes is not reported in the literature. A multiaxial load cell is mounted underneath the base plate to measure the base shear forces and overturning moments applied to the model in three perpendicular directions. A three-axis accelerometer is mounted at the level of the second cross-arm to measure response accelerations to evaluate the natural frequencies through a free-vibration test. Radial, tangential, and axial velocity components of the tornado wind field are measured using cobra probes. Sensitivity analyses are conducted to assess the variation of the structural dynamic response associated with the location of the tornado relative to the lattice transmission tower. Three different layouts representing the change in the orientation of the tower model relative to the components of the tornado-induced loads are considered. The structural responses of the aeroelastic model in terms of base shear forces, overturning moments, and lateral accelerations are measured. The results are utilized to understand the dynamic response of self-supported transmission towers to the tornado-induced loads.