• Title/Summary/Keyword: Vibration test

Search Result 3,760, Processing Time 0.102 seconds

Low-Velocity Impact Detection of Composite Plate Using Piezopolymer Sensor Signals without Charge Amplifier (전하증폭기를 사용하지 않은 고분자 압전센서 신호를 이용한 복합재 평판의 저속충격 탐지)

  • 김인걸;정석모
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.47-54
    • /
    • 2000
  • One promising method for impact detection of composite structures is based on the use of piezopolymer thin fim (PVDf) sensor. In this paper, the relationship between the contact force and the signals of the attached strain gage and PVDF sensor to the composite plate subjected to low-velocity impact were derived. The relation for the open circuit and short circuit voltage of PVDF sensor was derived based on the equivalent circuit model of the piezoelectric sensor. The work was then extended to include experimental investigation into the use of short circuit voltage of PVDF sensor without using charge amplifier to detect low-velocity impact. The natural frequencies and damping ratio of the composite plate obtained from the vibration test were used to modify the analytical model and therefore the differences between measured and simulated signal of the modified analytical model in both forward and backward problem were considerably reduced. The reconstructed contact force and simulated sensor signals agreed well with the measured contact force, strain gage signal, and PVDF sensor singanl.

  • PDF

Development of high speed coupling for 2MW class wind turbine (2MW급 대형 풍력발전기용 고속커플링 개발)

  • Son, Seung Deok;Lee, Hyoung Woo;Han, Jeong Young;Kim, Yong Won;Kang, Jong Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.262-268
    • /
    • 2014
  • This research introduces the structural design and the validation results of the flexible high speed coupling for 2MW class wind turbine which transmit and cut off torque between gear box and generator. The high speed coupling requires electrical insulation to prevent electrical surface damages on gear box. Therefore glass fiber reinforced plastics is applied to absorb the vibration and deformation of power train and to transmit required torque. Finite element analysis was performed to optimize the thickness and accumulation number of glass fiber reinforced plastics. Torque limiter which cut off the abnormal torque is designed in frictional disc type. The design of the coupling was validated with the performance test of prototype.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

Experimental contribution analysis of external aeroacoustic noise sources to interior noise of automobile (자동차 외부 공기음향 소음원들의 실험적 실내 기여도 분석 기술 개발)

  • Lee, Myung Han;Ih, Kang Duck;Hwang, Seongil;Kim, Yong-Joe
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.300-308
    • /
    • 2018
  • The contribution analysis of various external aeroacoustic noise sources to interior noise is important, enabling to design an automobile with a low interior noise level. With a new technique, the CD (Cholesky Decomposition), it is proposed to decompose an overall interior noise spectrum into multiple spectra, each representing the contribution of a specific noise source to the interior noise. In order to validate this method, three kinds of experiments were conducted. Furthermore, it is proposed to improve the CD-based contribution analysis method to be integrated with existing exterior microphone arrays in the wind tunnel. This method was validated with an experiment with two speakers.

Evaluation of Cracking Strength of Floating Floor System (뜬바닥구조의 균열강도 평가)

  • Lee, Jung-Yoon;Lee, Bum-Sik;Jun, Myoung-Hoon;Kim, Jong-Mun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper reports the test results of the floating floor system used to reduce the floor noise of apartment buildings. Recently, many soft resilient materials placing between the reinforced concrete slab and finishing mortar are used. The resilient material should not only reduce the floor impact sound vibration from the floor but also support the load on the floor. Thus, even if soft resilient materials satisfy the maximum limitation of light-weight impact sound and heavy-weight impact sound, these materials may not support the load on the floor. The experimental program involved conducting sixteen sound insulation floating floor specimens. Three main parameters were considered in the experimental investigation: resilient materials, loading location, and layers of floor. Experimental results indicated that the stiffness of resilient material significantly influenced on the structural behavior of floating floor system. In addition, the deflection of the floating concrete floor loaded at the side or coner of the specimen was greater than that of the floor loaded at the center of the specimen. However, the aerated concrete did not effect on the cracking strength of floating floor system.

Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact (저속 충격하에서의 금속복합재료의 동적 특성)

  • ;Gamal A. Aggag;K.Takahashi
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study has observed that the dynamic behavior of Metal Matrix Composites (MMCs) in low velocity impact varies with impact velocity. MMCs with 15 fiber volume percent were fabricated by using the squeeze casting method. The AC8A was used as the matrix, and the alumina and the carbon were used as reinforcements. The tensile and vibration tests conducted yielded the yielded the tensile stress and elastic modulus of MMCs The low pass filter and instrumented impact test machine was adopted to study dynamic behaviors of MMCs corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact energy of unreinforced alloy and MM s increased as the impact velocity increased. The increase of crack propagation energy was especially prominent, but the dynamic toughness of each material did not change much. To show the relation between crack initiation energy and dynamic fracture toughness, a simple model was proposed by using the strain energy and stress distribution at notch. The model revealed that crack initiation energy is proportional to the square of dynamic fracture toughness and inversely proportional to elastic modulus.

  • PDF

Improvement of the Prediction of Natural Frequencies Of Composite Laminated Plate Using Parametric Identification (변수 식별을 통한 복합재의 적층판의 고유진동수 예측 개선)

  • 홍단비;유정규;김승조
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • In order to predict the dynamic behavior of composite laminated plate accurately, the parametric identification is performed using its mechanical properties- $E_1,\;E_2,\;V_{12},\;G_{12}$ as design parameters. After natural frequencies are measured through simple vibration test, the objective function consists of the sum of errors between experimental and numerical frequencies of a structure. As optimization algorithm, conjugate gradient method is used to minimize the objective function. Sensitivity Analysis is performed to update design parameters during this process and can explain the result of parametric identification. In order to check the propriety of result, mode shapes are compared before and after identification. The improved prediction of natural frequencies of composite laminated plate is obtained with updated properties. For the application of result, updated properties is applied to the composite laminated plate that has different stacking sequence.

  • PDF

Development of a Harvester for Crawled Spinach (포복형 시금치 수확기 개발)

  • Jun H. J.;Kim S. H.;Choi Y.;Kim Y. K.;Hong J. T.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.210-219
    • /
    • 2005
  • This study was conducted to solve the problem of crawled spinach harvesting that had been mainly done by manpower on the outdoor fields during the winter season. Moreover, there are not enough workers available for farming at most of rural areas in Korea because farming is getting hard and the number of old-aged workers is increasing. In order to find appropriate methods of digging, picking and collecting of spinach, the tests were examined outdoors. A prototype was designed based on the results of the tests and then fabricated for digging, picking-up and then collecting in continuous operation for harvesting spinach planted in the outdoor fields. In the field test with the prototype, the vibration intensity transmitted to the driver by vibrating blade was low while the vibrating blade reduced digging power by $46\%$ compared to that of the fixed blade. The spinach loss was found to be as low as $0.7\%$ in the condition of digging depth of 40 mm, cam rotational velocity of 748 rpm, and blade amplitude of 16.5 m. The working performance of the prototype spinach harvester was found to be 3.8 hour/10a resulting in $96\%$ of labor saving and $85\%$ of operating cost compared to the conventional manual harvesting.

Review of Applicability of the Standard Blasting Patterns of MLTM to Various Rock Types (국토해양부 표준발파패턴의 셰일암반 적용성에 관한 사례 연구)

  • Kim, Se-Hyun
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Blasting is necessary for excavation processes since more than 70% of korean land is consist of mountains. The vibration and noise accompanied by blasting processes usually bring about public complaints. Blasting patterns are chosen by economical efficiency, stability and construction conveniency. However, there are many alternatives without control to settle the popular complaint. To prevent those alternatives, standard blasting method for design and construction were suggested by MLTM (Ministry of Land, Transport and Maritime Affairs) in 2006. However, standard blasting pattern of MLTM was designed in a lump irrespective of types of rocks. Economical loss may occur by ignoring the characteristics of rocks for the applications to the rocks with low intensity, such as shale, or containing many joint. We deduced some economical progresses by performing test blasting with adjusted drilling spacing and length of burden considering the characteristics of local rock. This paper suggests the start of case studies for different applications. Economic improvement can be expected by applying those results deduced from case studies to design and construction.

Design and Construction of 10 kWh Class Flywheel Energy Storage System (10 kWh급 플라이휠 에너지 저장 시스템 설계 및 제작)

  • Jung, S.Y.;Han, S.C.;Han, Y.H.;Park, B.J.;Bae, Y.C.;Lee, W.R.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 10 kWh class flywheel energy storage system (FESS) has been developed to evaluate the feasibility of a 35 kWh class SFES with a flywheel $I_p/I_t$ ratio larger than 1. The 10 kWh class FESS is composed of a main frame, a composite flywheel, active magnetic dampers (AMDs), a permanent magnet bearing, and a motor/generator. The flywheel of the FESS rotates at a very high speed to store energy, while being levitated by a permanent magnetic bearing and a pair of thrust AMDs. The 10 kWh class flywheel is mainly composed of a composite rotor assembly, where most of the energy is stored, two radial and two thrust AMD rotors, which dissipate vibration at critical speeds, a permanent magnet rotor, which supports most of the flywheel weight, a motor rotor, which spins the flywheel, and a central hollow shaft, where the parts are assembled and aligned to. The stators of each of the main components are assembled on to housings, which are assembled and aligned to the main frame. Many factors have been considered while designing each part of the flywheel, stator and frame. In this study, a 10 kWh class flywheel energy storage system has been designed and constructed for test operation.