Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2005.11a
/
pp.271-274
/
2005
For noise and vibration order-analysis on rotating machinery, it is compulsory to measure the RPM of the rotating part of the machine. Normally the RPM is measured using dedicated tacho-probes. In this paper we describe a new method that in real-time synthesizes a tacho signal from the measured noise or vibration signal thus eliminating the tacho probe. The method strengths and weaknesses are evaluated on practical signals.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.19
no.9
/
pp.943-949
/
2009
Many studies for measuring vibration using image signal are suggested. These methods can measure vibration of multi-points simultaneously. However, it has the disadvantage that is very sensitive to an environment. If the measured environment is not good, image signals can be measured including much background noise. So, it is difficult to obtain accurate vibration from the measured image signals. Another problem is that camera imaging has a resolution limit. Because the resolution of the camera image is relatively much lower than that of a data acquisition system, accurate measuring vibration cannot be performed. In this paper, we proposed the enhanced technique for measuring vibration using camera signal. The key word of this paper is a curve fitting. The curve fitting can exactly detect the measurement line of interested object. So, we can measure the vibration in noisy environment. Also, it can overcome the resolution limit.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2001.05a
/
pp.583-589
/
2001
For several decades many researchers have studied various algorithms, known as non-destructive testing, to identify abnormalities within a structure. Damage detection technique using vibration signal is a kind of these methods. Many researchers have published lots of papers dealing vibration signal to identify structural damage. All the methods for damage detection using vibration signal can be divided into two big categories. The first category is the method that requires some reference model such as finite element model, and the second is the method that does not require any reference model but needs only experimental data. This paper will be devoted to classify damage detection methods that utilize vibration signal.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
1998.04a
/
pp.173-178
/
1998
An automatic Q. C. tester for a production line of electric grinder is developed using vibration signals. The methods of measuring and analyzing the vibration signals are found through several experiments at laboratory and production line. The experiments show that checking a vibration signal at running condition only, without any sound signal, is enough to judge whether the product is good or not. The Q. C. tester is made of accelerometer and PC. Measured vibration signal using accelerometer is transmitted to PC through A/D board. Vibration level are calculated using FFT algorithm in PC for already selected five frequency bands, which can specify the cause of fault. The Judging criteria of vibration levels of each bands are decided through a lot of experiment with the comparison of manual judgement.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2009.10a
/
pp.607-610
/
2009
The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking
The vibration signals of driving parts of electric train are distorted its signal patterns due to the impact components, which occurs when wheel passes rail joints. An elimination method of the impact components is investigated using adaptive signal processing technique in this study The result shows that adaptive interference canceling method seems to be more effective than line enhancement technique. The application of adaptive interference canceling method to the signal measured at bogie shows that the extractions of the signals of driving parts of traction motor, reduction gear, and axle bearing are successful. Therefore, only the signals of bogie, which is the place to attach an accelerometer easily, is sufficient for the fault diagnosis and the safety evaluation of electric train. Also, adaptive interference canceling method can be applicable to evaluate the performance of vibration isolation between bogie and car body and to investigate the characteristics of indoor sound.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2000.06a
/
pp.1133-1138
/
2000
This paper describes a signal recognition method for diagnosing the rotating machinery using wavelet-aided Self-Organizing Feature Map(SOFM). The SOFM specialized from neural network is a new and effective algorithm for interpreting large and complex data sets. It converts high-dimensional data items into simple order relationships with low dimension. Additionally the Learning Vector Quantization(LVQ) is used for reducing the error from SOFM. Multi-resolution and wavelet transform are used to extract salient features from the primary vibration signals. Since it decomposes the raw timebase signal into two respective parts in the time space and frequency domain, it does not lose either information unlike Fourier transform. This paper is focused on the development of advanced signal classifier in order to automatize vibration signal pattern recognition. This method is verified by the experiment and several abnormal vibrations such as unbalance and rubbing are classified with high flexibility and reliability by the proposed methods.
Safety diagnosis of electric train driving system is performed using vibration signals of running electric train. Safety diagnosis is tried on the viewpoints of the appreciation of superannuation and the fault diagnosis of motor, reduction gear and bogie. The appreciation of superannuation is checked by the vibration levels of driving parts and the fault diagnosis is done by analyzing the frequencies of the vibration signals which are measured directly from a running electric train. The results shows that the vibration levels of each parts increase as the train gets older and each parts have their own frequency patterns of the vibration. Vibration propagation path is also investigated using calculated the coherence value between bogie and driving system. As the results, it is known that vibration signal can be utilized successfully for the safety diagnosis of the driving part of electric train.
The Transactions of the Korean Institute of Electrical Engineers C
/
v.52
no.11
/
pp.516-520
/
2003
A novel dual beam heterodyne Laser Doppler Vibrometer (LDV) in conjunction with FM demodulators, which utilizes a residual beam to eliminate the perturbationdue due to the vibrometer body vibration without any external reference surface, has been developed. Residual laser beam from the beam splitter is used to pick up the vibration of damper, which is mounted in the vibrometer, and combined with reference beam at the photodetector. The output signal of this detector and main signal are processed to extract the object vibration, using a least mean square adaptive algorithm. It is shown experimentally that the body vibration of 1-5 Hz can be effectively removed from the measured signal using DSP technology to extract unperturbed 100 Hz original signal.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.1
/
pp.77-84
/
2017
Generally, a time-varying vibration signal is generated in a rotating machine system, and when there is a failure in the rotating machine, the signal contains noise. In this paper, we propose a system consisting of an adaptive predictor and a binary tree filter bank for analyzing time - varying vibration signals with noise. And the vibration signal analyzed results in this system is used for fault diagnosis of the rotating machine. The adaptive predictor of the proposed system predicts the periodic signal components, and the filter bank system decomposes the difference signal between the input signal and the predicted periodic signal into subband. Since each subband signal includes a noise signal component due to a failure, it is possible to diagnose the failure of the using rotary machine. The validity of the proposed vibration signal analysis method is shown in the simulations, where the periodic components cancelled vibrating signals are decomposed to 32 subband, and the signal characteristics related faults are analyzed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.