• 제목/요약/키워드: Vibration serviceability

검색결과 185건 처리시간 0.023초

이동 질량 효과를 고려한 단경간 강합성 보행교의 보행 하중 진동 사용성 평가 (Vibration Serviceability Evaluation of a Single Span Steel-Concrete Composite Foot Bridge under Dynamic Pedestrian Loadings Considering Moving Mass Effect)

  • 박원석
    • 한국전산구조공학회논문집
    • /
    • 제36권2호
    • /
    • pp.75-83
    • /
    • 2023
  • 이 논문에서는 보행교의 진동 사용성 평가에 있어서 보행자의 이동 질량 관성 효과의 고려 여부, 보행 패턴 등을 고려한 보행 시나리오 등에 따른 해석 결과를 제시하고, 그에 따라 보행교 설계 단계에서 동적 유한요소 해석을 통한 진동 사용성 평가에 있어 적절한 해석 방법과 유의점을 제안한다. 지간 40m의 강합성 박스 단면을 갖는 단경간 단순교 형식의 보행교에 대하여 보행자 밀도, 보행 속도, 임의 보행, 동기화 보행 등을 고려한 보행 시나리오에 대한 가속도 응답을 분석한다. 해석 결과 고정 질량 해석 방법은 임의 보행 시나리오 해석에서 이동 질량 해석과 큰 차이를 보이지 않으며 진동 사용성 평가시에는 더 넓은 진동수 대역을 가진할 수 있는 임의 보행 시나리오를 고려하는 것이 바람직할 수 있음을 보였다.

Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings

  • Ross, Andrew S.;El Damatty, Ashraf A.;El Ansary, Ayman M.
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.537-564
    • /
    • 2015
  • Excessive motions in buildings cause occupants to become uncomfortable and nervous. This is particularly detrimental to the tenants and ultimately the owner of the building, with respect to financial considerations. Serviceability issues, such as excessive accelerations and inter-story drifts, are more prevalent today due to advancements in the structural systems, strength of materials, and design practices. These factors allow buildings to be taller, lighter, and more flexible, thereby exacerbating the impact of dynamic responses. There is a growing need for innovative and effective techniques to reduce the serviceability responses of these tall buildings. The current study considers a case study of a real building to show the effectiveness and robustness of the TLD in reducing the coupled lateral-torsional motion of this high-rise building under wind loading. Three unique multi-modal TLD systems are designed specifically to mitigate the torsional response of the building. A procedure is developed to analyze a structure-TLD system using High Frequency Force Balance (HFFB) test data from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of Western Ontario. The effectiveness of the unique TLD systems is investigated. In addition, a parametric study is conducted to determine the robustness of the systems in reducing the serviceability responses. Three practical parameters are varied to investigate the robustness of the TLD system: the height of water inside the tanks, the amplitude modification factor, and the structural modal frequencies.

수직진동 사용성을 고려한 플렛플레이트 두께 제안 (Proposing the Slab Thickness that Satisfies the Vertical Floor Vibration Criteria for Several Sizes of Flat Plate Floor System)

  • 이민정;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.600-603
    • /
    • 2003
  • The floor thickness in residential buildings may not satisfy the floor vibration criteria even though the thickness is determined by the serviceability requirements in current design provisons. Thus it is necessary to develop the procedure to determine slab thickness that satisfies the floor vibration criteria. In this study provide the methods to determine the slab thickness that satisfies the vertical floor vibration criteria for several sizes of flat plate floor system. Randomness inherent in young modulus of concrete and heel drop intensity was accounted. For this purpose Monte Carlo simulation procedure was adopted.

  • PDF

콘크리트 강도에 따른 바닥판 수직진동에 대한 적정 두께 제안 (The Adequate Slab Thickness Satisfied with the Vertical Floor Vibration Criteria for Several Concrete Compressive Strength)

  • 남상욱;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.659-662
    • /
    • 2003
  • Recently, the floor thickness in residence may not be satisfied with the floor vibration criteria although the thickness is evaluated by the serviceability requirements in current design provisions. Thus it is necessary to develop the procedure to determine slab thickness satisfied with the floor vibration criteria. In this study, We proposed the methods to determine the slab thickness satisfied with the vertical floor vibration criteria for several concrete compressive strength of flat plate floor systems. For this purpose Monte Carlo simulation procedure was adopted and both randomness inherent in young modulus of concrete and heel drop intensity were accounted.

  • PDF

합성데크를 사용한 바닥판의 동적하중 이론식 개발 (A Development of a Dynamic Load Function for a composite Deek Floor System)

  • 김태윤
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.127-134
    • /
    • 1999
  • Vibration problem occurring at the metal deck floor system not only reduces the serviceability of a building but also reduces the usability of a floor system. Most problem occurring at the metal deck floor results from the human movement such as walking and running. However the vibration induced by running does not occur continuously except the special case. therefore the floor vibration due to walking was only considered on this paper,. Vibration occurring due to human walking was measured and the corresponding load function was derived through the Fast Fourier Transform(FFT)

  • PDF

Improving a current method for predicting walking-induced floor vibration

  • Nguyen, T.H.;Gad, E.F.;Wilson, J.L.;Haritos, N.
    • Steel and Composite Structures
    • /
    • 제13권2호
    • /
    • pp.139-155
    • /
    • 2012
  • Serviceability rather than strength is the most critical design requirement for vibration-vulnerable floor constructions. Annoying vibrations due to normal walking activity have been observed more frequently on long-span lightweight floor systems in office and commercial retail buildings, raising the need for the development of floor vibration design procedures. This paper highlights some limitations of one of the most commonly used guidelines AISC/CISC DG11, and proposes improvements to this method. Design charts and approximate closed form formulas to estimate the walking response are developed in which various factors relating to the dynamic characteristics of both the floor and the excitation are considered. The accuracy of the proposed formulas and other proposals found in the literature is examined. The proposed modifications would be significant, especially with long-span floors where vibration levels may be underestimated by the current design procedure. The application of the proposed prediction method is illustrated by worked examples that reveal a good agreement with results obtained from finite element analyses and experiments. The presented work would enhance the accuracy and maintain the simplicity and convenience of the design guideline.

Pedestrian- and wind-induced bi-directional compound vibration control using multiple adaptive-passive TMD-TLD system

  • Liangkun Wang;Ying Zhou;Weixing Shi
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.415-430
    • /
    • 2024
  • To control vertical and lateral compound vibration simultaneously using an integrated smart controller, passive tuned mass damper (TMD) and tuned liquid damper (TLD) are updated and combined to an adaptive-passive TMD-TLD (AP-TMD-TLD) system. As for the vertical AP-TMD part on top of the vertical spring, it can retune itself through varying the level of liquid in the tank to adjust its mass, while the lateral AP-TLD part at the bottom of the vertical spring can retune itself by changing the level of liquid. Further, for multimodal response control, the multiple AP-TMD-TLD (MAP-TMD-TLD) system is proposed as well. Each AP-TMD-TLD in the system can identify the structural vertical and lateral modal frequencies through the wavelet-transform (WT) based algorithm and retune its vertical and lateral natural frequencies both through adjusting the level of liquid in the AP-TMD and AP-TLD parts respectively. A cantilever cable-stayed landscape bridge which is sensitive to both human-induced and wind-induced vibrations is presented as a case study. For comparison, initial parameters of MAP-TMD-TLD are mistuned. Results show that the presented system can retune its vertical and lateral frequencies precisely, while the retuned system has a better bi-directional compound control effect than the mistuned system before the retuning operation and can improve the serviceability significantly.

Use of TLD and MTLD for Control of Wind-Induced Vibration of Tall Buildings

  • Kim, Young-Moon;You, Ki-Pyo;Ko, Nag-Ho;Yoon, Sung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1346-1354
    • /
    • 2006
  • Excessive acceleration experienced at the top floors in a building during wind storms affect the serviceability of the building with respect to occupant comfort and discomfort. Tuned liquid damper (TLD) and multiple tuned liquid damper (MTLD), which are passive control devices consisting of a rigid tank filled with liquid, are used to suppress vibration of structures. These TLD and MTLD offer several potential advantages-low costs, easy installation in existing structures and effectiveness even for small-amplitude vibrations. This study carries out a theoretical estimation of the most effective damping ratios that can be achieved by TLD and MTLD. Damping by TLD an MTLD reduced the frequency response of high-rise buildings by approximately 40% in urban and suburban areas.