• Title/Summary/Keyword: Vibration resistance

Search Result 424, Processing Time 0.029 seconds

Dynamic Resistance of Anchor using Blasting Test and Numerical analysis for Earthquake (발파실험과 내진해석을 통한 Anchor의 동적 저항성에 관한 연구)

  • Choi, Kyung-Jip;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.500-511
    • /
    • 2017
  • Recently, as earthquakes have occurred in Gyeongju, interest in the stability of structures against vibration from earthquakes has increased. In Korea, the capacity of load resistance is mainly considered in the design of anchors. However, the vibration resistance characteristics of anchors have not been fully elucidated. The traditional type of anchor, which is a frictional resistance anchor, is often reported to fail due to vibration in construction procedures, such as blasting. The expansion type of anchor, on the other hand, could have more resistance to vibration but its capability of demonstrating vibratory resistance has to be investigated. In order to verify the vibratory resistance characteristics of expansion anchors against blasting and earthquake vibration, field tests and numerical analyses for seismic wave were performed. Field blasting test results show that the expansion anchor has better capability against vibratory load than does the frictional type anchor. Numerical analysis to earthquake also show that the expansion type anchor provides more resistance than does the frictional type anchor.

The Effect of Vibration on the Hemorheological Characteristics of Non-aggregated Blood

  • Sehyun Shin;Ku, Yun-Hee;Moon, Su-Yeon;Suh, Jang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1104-1110
    • /
    • 2003
  • The present study investigates the hemorheological characteristics of blood flow with applying vibration to a non-aggregating red blood cell suspension. In order to obtain the non-aggregating RBC suspension, blood samples were treated with vibration at a specified condition, which viscosities were taken before and after the treatment, respectively. The viscosity of the blood samples after treatment was higher than before treatment. These treated blood samples were forced to flow through a capillary tube that was vibrated perpendicularly to the direction of the flow. The experimental results showed that vibration caused a reduction of the flow resistance of the non-aggregated blood. The reduction of the flow resistance was strongly dependent on both frequency and amplitude of vibration. These results show potential in treating various diseases in the microcirculation associated with blood cell aggregation.

Analysis for Driving Shock Resistance of Military Vehicle (군용 차량 주행 내충격 분석)

  • Jeon, Jong-Ik;Lee, Jong-Hak;Jeong, Eui-Bong;Kang, Kwang-Hee;Choi, Ji-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.267-272
    • /
    • 2014
  • In this paper, we analyze the characteristics for the driving shock resistance of the military vehicle through the bump test. Prior to the experiment, theoretical analysis was performed by using the SRS(shock response spectrum) and VRS(vibration response spectrum) analysis method. And we estimated the characteristics for the driving shock resistance of the military vehicle. Bump test was performed using the acceleration sensor and the driving test at a different speed. We evaluated the characteristics for the driving shock resistance of the military vehicle based on the result. And predicted values were compared with the theoretical analysis. In addition, we evaluated the results of the theoretical prediction of the SRS and the VRS analysis. And we evaluate the suitability of the prediction method at military vehicle shock analysis.

  • PDF

Experimental study on the shear failure model for concrete under compression-shear loading

  • Shu, Xiaojuan;Luo, Yili;Zhao, Chao;Dai, Zhicheng;Zhong, Xingu;Zhang, Tianyu
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 2022
  • The influence of normal stress perpendicular to the potential shear plane was always neglected in existing researches, which may lead to a serious deviation of the shear strength of concrete members in practice designs and numerical analyses. In this study, a series of experimental studies are carried out in this paper, which serves to investigate the shear behavior of concrete under compression shear loading. Based on the test results, a three-phase shear failure model for cohesive elements are developed, which is able to take into consideration the influence of normal stress on the shear strength of concrete. To identify the accuracy and applicability of the proposed model, numerical models of a double-noted concrete plate are developed and compared with experimental results. Results show that the proposed constitutive model is able to take into consideration the influence of normal stress on the shear strength of concrete materials, and is effective and accurate for describing the complex fracture of concrete, especially the failure modes under compression shear loadings.

Design of X-Y Actuator with High Vibration Resistance lot Probe-based Data Storages (탐침형 정보저장장치용 이차원 구동기의 내진 구조)

  • Lee, Kyoung-Il;Kim, Seong-Hyun;Cho, Jin-Woo;Choi, Young-Jin;Shin, Jin-Koo
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.195-196
    • /
    • 2005
  • We report the new design of a miniature electromagnetic actuator for probe-based data storage with anti-vibration mechanism. The actuator consists of a media substrate, silicon frame, 2 pairs of magnets, a spacer, and a printed circuit board (PCB). The total area of the device is $11.2{\times}11.2 mm^2$ while the data recording area is $7.4{\times}7.4 mm^2$. A net momentum fee structure was included for high vibration resistance. The simulation shows that the lateral vibration can be reduced to below 100 nm for 1 G acceleration if the counter mass is adjusted with $1\%$ difference. The peak power for ${\pm}50 {\mu}m$ displacement is below 50 mW for a actuator with a resonance at 200 Hz.

  • PDF

Development of Resilient Sleeper for Reduction of Sound and Vibration in High Speed Railways (소음.진동 저감을 위한 고속철도용 방진침목 개발)

  • 엄주환;양신추;강윤석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1242-1248
    • /
    • 2001
  • In this paper, the process of development of resilient sleepers, which improves the train safety, passenger comport and reduces the noise and vibration, is presented. To determine the required material properties of elastic pad, static and dynamic simulations are performed and is applied in manufacturing. Lateral resistance and durability characteristics of the resilient sleepers are experimentally investigated. From the experiment results, it is investigated that the displacement is less for sleeper with elastic pad than that in ordinary PC form. However, the lateral resistance is investigated little less -for sleeper with elastic pad than ordinary PC form. These results indicate that the elastic pad can reduce possibility of rail-corrugations and thus resulting in the reduction of maintenance costs.

  • PDF

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Is There Any Immediate Difference between Pulmonary Function and Respiratory Muscle, with or without Vibration Stimulation in Respiratory Resistance Training? (진동 자극 유무에 따른 호흡 저항 훈련 시 폐 기능과 호흡근의 즉각적인 차이가 있을까?)

  • Park, Jin-Young;Kim, Ye-Seul;Park, Hyun-Ju;Lee, Myung-Mo
    • Journal of Korean Physical Therapy Science
    • /
    • v.25 no.3
    • /
    • pp.17-24
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effect of whole body vibration combined breathing resistance on lung capacity and respiratory muscle and to suggest a mediation method for improvement of respiratory function and lung function in the future. Methods: This study was a preliminary study design of two groups of 54 healthy young adults who were randomly assigned to an experimental group (n=27) with core exercise combined with respiratory resistance and whole body vibration and a control group with respiratory resistance and core exercise (n=27). All interventions consisted of 6 core exercises every 40 seconds and rest for 20 seconds. To compare the effects of intervention, we measured spirometry and respiratory muscle strength. Results: Both the experimental group and the control group showed a significant increase in Forced vital capacity (FVC) and Maximum voluntary ventilation (MVV) (p<.05). However, FEV1 and FEV1% were significantly increase only in the experimental group (p<.05). FVC, FEV1%, Maximum Inspiratory Pressure (MIP), Maximum Expiratory Pressure (MEP) showed more significant increase in the experimental group than the control group. Conclusion: These findings indicate that whole-body vibration combined breathing resistance is an effective intervention for people, with FVC, FEV1%, MIP, MEP increase.

New vibration control device and analytical method for slender structures

  • Takabatake, Hideo;Ikarashi, Fumiya
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.11-39
    • /
    • 2013
  • Since slender structures such as utility poles, radio masts, and chimneys, are essentially statically determinate structures, they often collapse during earthquakes. Although vibration control is the most logical method for improving the earthquake resistance of such structures, there are many practical problems with its implementation due to their very long natural vibration period. This paper proposes a new vibration control device to effectively prevent the collapse of slender structures subjected to strong earthquakes. The device consists of a pendulum, an elastic restraint and a lever, and is designed such that when it is attached to a slender structure, the second vibration mode of the structure corresponds to the first vibration mode of the same structure without the device attached. This is highly effective in causing the transverse motions of the device and the structure to oppose each other and so reduce the overall transverse vibration during an earthquake. In the present paper, the effectiveness of the vibration control device is first evaluated based on laboratory experiments and numerical studies. An example of applying the device to a tall chimney is then simulated. A new dynamic analytical method for slender structures with abrupt rigidity variations is then proposed.

Shock Resistance Analysis of a Propulsion Motor for Naval Vessels (함정용 추진전동기의 내충격성 해석)

  • Bae, Sung-Wook;Hong, Chin-Suk;Jeong, Weui-Bong;Park, Young-Su;Bin, Jae-Goo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1183-1189
    • /
    • 2010
  • Shock-resistance test for a real equipment for a normal vessel is one of the difficult problem in many cases because of terrible cost and weight. An analysis technique to evaluate the shock resistance in a design stage is necessary, instead In this paper, the process to evaluate the shock resistance of a propulsion motor for naval vessels was presented based on German navy's BV043 regulation. The shock signal to impose the equipment under the test was first evaluated, and was then applied to the structural FE model of the equipment. From the transient FEA, the time history of von-Mises stress was obtained by the mode superposition method. The shock resistance was evaluated using the peak value of the von-Mises stress.