• Title/Summary/Keyword: Vibration reduction performance

Search Result 536, Processing Time 0.035 seconds

Shape Optimization of the Steering Support System Using HYDROFORMING (STEERING SYSTEM 지지계에 HYDROFORMING 적용시 형상 최적화 연구)

  • 서정범;김봉수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.571-576
    • /
    • 2001
  • Hydroforming, the new production technology, has been used to manufacture many parts of vehicle in the recent auto industry. When Hydroforming is applied, it is possible to make parts simplification and flexible alteration of section shape in many advantages such as weight reduction, number of parts reduction or performance improvement. This research into shape optimization which reduces number of parts and weight maintaining performance was achieved. In this paper, the COWL CROSS BAA and MT'g BAKT parts of A car STEERING support SYSTEM was introduced by using Hydroforming.

  • PDF

Floor Impact Noise Reduction Performance of Double-Floor System in Apartments (공동주택 이중바닥구조의 바닥충격음 저감성능)

  • Baek, Gil-Ok;Park, Hong-Gun;Mun, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.197-202
    • /
    • 2014
  • Floor Impact Noise is a structure-borne noise which is mainly caused by vibration of concrete slabs. The majority of previous studies have focused on investigating performance of absorbing sheets on the reduction of floor impact noise. But absorbing sheets do not efficiently reduce heavy-weight floor impact noise level because it cannot absorb slab vibration, which is the fundamental noise source. In this study, double-floor system was developed in order to reduce floor impact noise level in residual buildings. This floor system reduces heavy-weight impact noise level by reducing vibration response at the center of slab, which has maximum amplitude in the 1st vibration mode. In order to identify the performance of the double-floor system, experiments were planned. Primary test parameters are span of double floor, arrangement and types of absorbing sheets.

  • PDF

Performance Uncertainty Estimation of a Nonlinear Vibration System Based on a Sampling Method (샘플 추출방법에 근거한 비선형 진동계의 성능 불확실성 예측)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.113-118
    • /
    • 2009
  • A designer regards the vibration system as a linear system. However, in real world, nonlinearity of a vibration system should exist caused by various factors like manufacturing conditions or uncertain material properties. So, properties of a spring and a damper which are consisting the vibration system have statistical distribution. Therefore, a designer needs to analyze the statistical nonlinearity in a vibration system. In this paper, $1^{st}$ Taylor series expansion method and univariate dimension reduction method apply to a performance measure of nonlinear vibration system, and compare each result. And then, merits and demerits of each method are discussed. For apply more actual problem, a performance measure population is estimated based on design variable samples like properties of spring or damper.

  • PDF

Analysis of the Reduction of Light-weight Imapct Noise for Load Condition of Floating Floor (뜬바닥층의 하중조건에 따른 경량충격음 저감량 분석)

  • Kim, Myung-Jun;Lee, Sung-Ho;Yang, Jae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.356-360
    • /
    • 2006
  • Recently, for the purpose of improving the isolation performance of impact noise, many resilient materials have been installed in a residential building. As one of the reduction method for improving the performance of light-weight impact noise, this study is focused on the load condition of floating layer over resilient material. We studied the correlation between the mass or load of the floating layer and the reduction of light-weight impact noise by experiments in reverberation chamber for testing the impact noise. The results show that the reduction of impact noise is improved by increasing the mass per unit area of floating layer until about $140kg/m^2$. But the reduction is not obvious by adding extra mass on the floating layer.

  • PDF

Seismic Performance and Vibration Control of Urban Over-track High-rise Buildings

  • Ying, Zhou;Rui, Wang;Zengde, Zhang
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.207-219
    • /
    • 2022
  • During the structural design of urban over-track high-rise buildings, two problems are most likely encountered: the abrupt change of story stiffness between the podium and the upper towers, as well as the demand for train-induced vibration control. Traditional earthquake-resistant structures have to be particularly designed with transfer stories to meet the requirement of seismic control under earthquakes, and thus horizontal seismic isolation techniques are recommended to solve the transfer problem. The function of mitigating the vertical subway-induced vibration can be integrated into the isolation system including thick rubber bearings and 3D composite vibration control devices. Engineering project cases are presented in this paper for a more comprehensive understanding of the engineering practice and research frontiers of urban over-track high-rise buildings in China.

A Study on Clutch Torsional Characteristics for the Torsional Vibration Reduction at Driving (주행시 비틀림진동 저감을 위한 클러치 비틀림특성 연구)

  • 정태진;홍동표;태신호;윤영진;김상수
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.75-83
    • /
    • 1995
  • The fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the fluctuation of the torque of recent light weighted and high powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. This paper presents an experimental and theoretical research on the clutch-disc torsional characteristics for the reduction of the torsional vibration at driving. The effects of clutch-damper on diminishing the torsional vibration were investigated experimentally. A dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics and the clutch-disc torsional characteristics for reducing the torsional vibration has been suggested. The results are as follows: (1) By exceuting simulations using nonlinear model of four degrees of freedom, a design technique to determine the clutch-disc torsional characteristics for reducing the torsional vibration at driving was developed. (2) The influence of barious torsional characteristics of the clutch has been studied in examining design parameters, which indicates that the domain to minimize the torsional vibration at driving depends on the characteristics of the clutch-damper, i. e., spring constant and hysteresis.

  • PDF

The Hybrid Control System for the Vibration Isolation and the Transient Response Reduction of precision Equipment (정밀장비의 방진 및 과도응답 제어를 위한 하이브리드 방진시스템)

  • Lee, Gyu-Seop;Son, Sung-Wan;Lee, Hong-Ki;Han, Hyun-Hee;Chun, Chong-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.185-189
    • /
    • 2009
  • It is very important to control the vibration transmitted from external utilities and the transient response due to the internal sources for the precision equipment, which is very sensitive to the vibration environment. The anti-vibration tables that use air springs have been widely used due to their excellent isolation performance, but the systems with high flexibility have the critical problem of large transient response by the impulsive force of the moving mass in operation of the equipment. In this paper, the hybrid vibration control system is proposed, which is combined the air springs with the semi-active MR dampers in order to satisfy the performances of isolation and vibration reduction simutaneously.

  • PDF

Spray Deadener Application for Reduction of Vehicle NVH (스프레이 제진재에 의한 승용차 소음진동 저감)

  • 이종규;허덕재;조영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1150-1155
    • /
    • 2001
  • Vehicle Manufacturers use asphalt deadener sheets for their passenger cars to reduce noise and vibration from engine and road surface. Since their shapes are limited to a few variations, it is very difficult to reduce unnecessary weight by changing the shape of the deadeners. There is also damping performance limit in the asphalt sheets. Therefore, a high damping material should be implemented into the vehicle noise and vibration reduction activities to overcome the disadvantage of asphalt sheets. In this study, measurement of the damping loss factor and sound transmission loss were made to compare the properties and vehicle test and analysis was followed to evaluate the NVH performance of each deadener type in the vehicle.

  • PDF

Vibration Reduction of Forklift Truck Using Optimization of Engine Mount Layout (마운트 배치 최적화를 통한 지게차 엔진 진동 저감)

  • Kim, Younghyun;Kim, Kyutae;Lee, Wontae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.102-107
    • /
    • 2014
  • The engine excitation forces are considered as major vibration source for the forklift truck, especially in small class. Even though the current engine mounting system designs are acceptable for vibration isolation, the performance of the engine mounting system is still required for the tendency of light weight, higher power and driver's higher vibration requirement. In this paper vibration reduction technique of forklift engine which is supported on rubber mounts is presented. Based on the dynamic model of resilient engine mounting system, design evaluation program is established. The design optimization technique and evaluation method of system properties are discussed. Effects of optimal design are validated through comparison with test results.