• Title/Summary/Keyword: Vibration reduction

Search Result 2,345, Processing Time 0.026 seconds

Structural Performance Evaluation of Hollow Reinforced Concrete Half Slabs (철근콘크리트 중공 하프슬래브의 구조성능평가)

  • Hwang, Hyun-Bok;Kim, Sang-Woo;Hwang, Hyun-Sik;Lee, Ki-Jang;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.45-48
    • /
    • 2008
  • This study is for proposing the shape of hollow and evaluating the structural performance of hollow reinforced concrete (RC) half slabs. The two-phase experimental works were carried out, and styrofoam was used for reduction of dead load and vibration. From the Phase I test result, the shape and spacing of the hollow were determined to obtain the high deduction ratio of the concrete and the desirable failure mode of the hollow RC half slabs. In the Phase II test, two slab specimens were tested in flexure to evaluate the flexural capacity of the hollow RC half slabs with the proposed hollow shape. In the result of the test, all the specimens having the proposed hollow shape showed sufficient flexural capacity.

  • PDF

Torque Ripple Reduction Algorithm of PM Synchronous Motor at High Speed Operation (영구자석 동기 전동기의 고속운전 시 토크리플 저감 알고리즘)

  • Kim, Jong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.429-436
    • /
    • 2015
  • Torque ripples generate mechanical vibration at low speed and acoustic noise at high speed. The back emf harmonics of a PM synchronous motor is one of the main sources of torque ripples. To reduce torque ripples resulting from back emf harmonics, dq-axis harmonic currents that reduce the torque ripples are generally compensated to the current controller. Harmonic current compensation is effective at low speed, but it is not applicable at high speed because of the limited bandwidth of the current controller. In this study, dq-axis harmonic voltage compensation that can reduce torque ripples at high speed is proposed. The dq-axis harmonic voltages are calculated from the motor speed and the dq-axis harmonic currents. The effectiveness of the proposed method in reducing torque ripple is verified by a simulation and experiments.

Two-Degree-of-Freedom Speed Control of Two-Mass System using Optimal Pole Assignment Method (최적 극배치 기법을 이용한 2관성 공진계의 2자유도 속도제어)

  • Jeon, Don-Su;Kim, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.18-25
    • /
    • 2000
  • In the two-mass servo system driving a load through a flexible shaft, a shaft torsional vibration is often generated. PI controller has been generally used is speed control of such system because of the simplicity of structure and related theory. This paper presents the inertia ratio of the PI servo control system which can be designed by using optimal pole assignment method is fixed. Therefore, it's difficult to obtain the desired control characteristics for different systems only by PI control algorithm. To solve this problems the two-mass speed control system with PID controller is designed by using pole assignment method and an optimum PID parameters are derived by evaluating ITAE(Integral of time multiplied by the absolute error) performance index. But this design method has some problems due to a trade-off between the fast command following property and the attenuation of disturbances and vibrations. In this paper, 2-DOF PID control method which satisfies the command following property, the reduction of overshoot and the property of disturbance rejection at the same time is proposed. This is a practical speed controller using the desired value filter and the feedforward gain. From several simulations, it's clarified that the proposed 2-DOF PID controller is useful for the two-mass system, in comparison with the conventional PID controller.

  • PDF

Static and Dynamic Analyses of Bending Problems Using 3-Dimensional 10-Node Equivalent Element (3차원 10절점-상당요소에 의한 굽힘문제의 정적.동적해석)

  • 권영두;윤태혁
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.117-130
    • /
    • 1997
  • In this paper, a modified 10-node equivalent solid element(MQM10 element), which has smallest degrees of freedom among 3-dimensional solid elements accounting bending deformation as well as extensional and shear deformations of isotropic plates, is proposed. The proposed MQM10 element exhibits stiffer bending stiffness due to the reduction of degrees of freedom from 20-node element or Q11 element. As an effective way to correct the relative stiffness stiffening phenomenon, the modification equation of Gauss sampling points is proposed. The quantity of modification is a function of Poisson's ratio. The effectiveness of MQM10 element is tested by applying it to several examples. It is noted that the results of static and free vibration analysis of isotropic plates using MQM10 elements show a good agreement with those using 20-node element.

  • PDF

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Zenz, Georg;Berger, Wolfgang;Gerstmayr, Johannes;Nader, Manfred;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.547-577
    • /
    • 2013
  • To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.

High Speed Milling of Titanium Alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Chen, Ming;Lee, Young-Moon;Yang, Seung-Han;Jang, Seung-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.34-39
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. The chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number of shear ribbons and bigger shear angle than that at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability mot depression of temperature increment anti-fatigability as well as surface roughness. The burrs always exist both at low cutting speed and at high cutting speed. So the deburring process should be arranged for milling titanium alloy in my case.

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

Earthquake Simulation Tests of a 1 :5 Scale 3-Story Masonry-Infilled Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 1999
  • The objective of this research is to observe the actual response of a low-rise nonseismic moment-resisting masonry-infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. The reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N2IE component earthquake ground motion, whose peak ground acceleration(PGA) was modified to 0.12g, 0.2g, 0.3g, and 0.4g. The g1oba1 behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of the structure were measured. Before and after each earthquake simulation test, free vibration tests and white noise tests were performed to find the changes in the natural period of the model. When the results of the masonry-infilled frame are compared with those of the bare frame, it can be recognized that masonry infills contribute to the large increase in the stiffness and strength of the g1oba1 structure whereas it also accompanies the increase of earthquake inertia forces. However, it is judged that masonry infills may be beneficial to the performance of the structure since the rate of increase in strength appears to be greater than that of the induced earthquake inertia forces.

  • PDF

Electrical and Structural Design of Air-conditioning Fan Motor for Noise Reduction

  • Han Hyung-Suk;Mo Jin-Yong;Kim Chang-Hyun;Lee Jae-Kwon;Jeong Weui-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1653-1661
    • /
    • 2006
  • AC induction motors have been widely used for fan motor of the air conditioner indoor unit. Noise of these AC induction motors is usually caused by the coupling effects of structural and electrical systems. The rotating torque and the noise from AC induction motor were discussed in this paper,. First, the modification of motor was carried out in order to reduce the unbalance magneto motive force between main and sub winding. Second, structural modification based on normal mode analysis and modal testing was carried out so that the fan motor does not have the natural frequencies near the 2f-line frequency. Numerical modifications through these two processes were verified by experiments, which showed that the sound pressure level at 2f-line frequency of the modified system became about 25dB less than that of conventional one.

Optimum Design of High Voltage Fuse Holder with a Built-in Acoustic Absorber System (흡음장치를 내장한 고전압 퓨즈홀더의 최적설계에 관한 연구)

  • Jin, Yeung-Jun;Lee, Hae-Won;Hwang, Yu-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Noise and vibration are likely to disturb the sensory system of human body leading to psychological stress and thereby property damage. In this research, a cut out switch(COS) with a built-in acoustic absorber along with a COS fuse broken was developed to reduce percussion noise. This new system is based on a design approach that combines existing absorber systems: expansion type, resonator type, and acoustic absorber type silencer The noise performance of the new system was simulated using the $SYSNOISE^{TM}$ software under optimized parameters: the diameter of perforated plate 2 mm, the plate thickness 3 mm, the width of expansion room 25 mm, the impinging vortex room 14 mm, and the noise absorbtion room 10 mm. The results showed that it reduced noise by approximately 41.1 dB compared to the current systems available in the market. Furthermore, it showed reduced noise by approximately 12 dB more than a product with an acoustic absorber of the Fault Tamer(USA).