• Title/Summary/Keyword: Vibration perception

Search Result 127, Processing Time 0.023 seconds

Sound Quality Evaluation for the Vehicle HVAC System Using Optimum Layout of Damping material (제진재의 최적배치를 이용한 차량공조시스템의 음질평가)

  • Hwang, Dong-Kun;Abu, Aminudin Bin;Lee, Jung-Youn;Oh, Jae-Eung;Yoo, Dong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.629-633
    • /
    • 2005
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. In previous study, we have developed to verify identification of source for the vehicle HVAC system through multiple-dimensional spectral analysis. Also we carried out objective assessments on the vehicle HVAC noises and subjective assessments have been already performed with 30 subjects. In this study, the linear regression models were obtained for the subjective evaluation and the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Appropriation of regression model is necessary to $R^2$ value and F-value. And testing for regression model is necessary to Independence, Homoscedesticity and Normality. Also we selected optimum layout of damping material using Taguchi method. As a result of application, sound quality is improved by more quiet, powerful, expensive, smooth.

  • PDF

Sound Quality Evaluation of the Level D Noise for the vehicle using Mahalanobis Distance (Mahalanobis Distance 를 이용한 차량 D 단 소음의 음질 평가)

  • Park, Sang-Gil;Park, Won-Sik;Sim, Hyoun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.311-317
    • /
    • 2007
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. And, optimal characteristic values influenced on the result of the SQ evaluation were derived by signal to noise ratio(SN ratio) of the Taguchi method. Finally, the new method to evaluate SQ is constructed using Mahalanobis-Taguchi system(MTS). Furthermore, the MTS method for SQ evaluation was compared by the result of SQ grade table at the previous study and their virtues and faults introduced.

  • PDF

The Sound Quality Evaluation and preference Analysis of Vacuum Cleaner (진공 청소기의 음질 평가 및 선호도 분석)

  • Jung, Dong-Hyun;Park, Sang-Gil;Fawazi, Noor;Lee, You-Yub;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1297-1301
    • /
    • 2007
  • The Conventional noise control attempts to simply reduce the level of product noise. But it is very straight forward way that we have consider human perception on noise. Since human listening is very sensitive to sound. Evaluation of the sound quality of a Vacuum Cleaner is studied base on human sensibility engineering. In this paper, we choose two Vacuum Cleaners that are sold in Korea and reduced noise control. Comparison Method is used to evaluate noise and preference of Vacuum Cleaner by steps. The sound quality of Vacuum Cleaner noise is analyzed by employing the subjective evaluation and by representing them in terms of the objective quantities. Semantic Differential Method is used to study sound quality Evaluation. To analyze the sound quality of Vacuum Cleaner noise, consider the coefficients of correlation between sound metrics and subjective rating. The linear regression models were obtained for the subjective evaluation and sound quality metrics.

  • PDF

Modeling of individual head-related impulse responses using a set of general basis functions (보편적인 기저함수를 이용한 개인의 머리전달함수 모델링)

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1430-1436
    • /
    • 2007
  • A principal components analysis (PCA) of the median head-related impulse responses (HRIRs) in the CIPIC HRTF database reveals that the individual HRIRs can be adequately reconstructed by a linear combination of 12 orthonormal basis functions. These basis functions can be used generally to model arbitrary HRIRs, which are not included in the process to obtain the basis functions. To clarify whether these basis functions can be used to model other set of arbitrary HRIRs, an numerical error analysis for modeling and a series of subjective listening tests were carried out using the measured and modeled HRIRs. The results showed that the set of individual HRIRs, which were measured in our lab using different measurement conditions, techniques, and source positions, can be well modeled with reasonable accuracy. Furthermore, all subjects reported not only the accurate vertical perception but also the front-back discrimination with the modeled HRIRs based on 12 basis functions. However, as less basis functions were used for HRIR modeling, the modeling accuracy and localization performance deteriorated.

  • PDF

Estimation of Sensitivity Axis Offset of an Accelerometer for Accurate Measurement of the 6 DOF Human Head Motion (인체 머리부 6 자유도 운동 측정의 신뢰성 향상을 위한 가속도계 감도축의 옵셋(offset) 추정)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon;Jang, Han-Kee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.905-912
    • /
    • 2008
  • Notion sickness is well known to be caused by long time exposure to the very low frequency motion in the multiple axes of human body Since the vestibular system for the perception of low frequency motion is located in the head, accurate measurement of 6 degree of freedom head motion is of great importance. In this study, the measurement system consisting of a safety helmet and 9 translational accelerometers was constructed for the estimation of 3 translational and 3 rotational motions of human head. Since estimation errors of 3 rotational components can be significantly magnified even by small offset of the sensitivity axis from the geometric center of an accelerometer, accurate measurement of sensitivity axis must be preceded. The method for accurate estimation of the offset was proposed, and the effect of offset on the estimation of angular acceleration was investigated.

Median HRIR Customization via Principal Components Analysis (주성분 분석을 이용한 HRIR 맞춤 기법)

  • Hwang, Sung-Mok;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.638-648
    • /
    • 2007
  • A principal components analysis of the entire median HRIRs in the CIPIC HRTF database reveals that the individual HRIRs can be adequately reconstructed by a linear combination of several orthonormal basis functions. The basis functions represent the inter-individual and inter-elevation variations in median HRIRs. There exist elevation-dependent tendencies in the weights of basis functions, and the basis functions can be ordered according to the magnitude of standard deviation of the weights at each elevation. We propose a HRIR customization method via tuning of the weights of 3 dominant basis functions corresponding to the 3 largest standard deviations at each elevation. Subjective listening test results show that both front-back reversal and vertical perception can be improved with the customized HRIRs.

Modeling of Median-plane Head-related Impulse Responses Using a Set of General Basis Functions (보편적인 기저함수를 이용한 중앙면상의 머리전달함수 모델링)

  • Hwang, Sung-Mook;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.448-457
    • /
    • 2008
  • A principal components analysis (PCA) of the median-plane head-related impulse responses (HRIRs) in the CIPIC HRTF database reveals that the individual HRIRs in the median plane can be adequately reconstructed by a linear combination of 12 orthonormal basis functions. These basis functions can be used to model arbitrary median-plane HRIRs, which are not included in the process to obtain the basis functions. Memory size can be reduced up to 5-fold depending on the number of HRIRs to be modeled. To clarify whether these basis functions can be used to model other set of arbitrary median plane HRIRs, a numerical error analysis for modeling and a series of subjective listening tests were carried out using the measured and modeled HRIRs. The results showed that the set of individual HRIRs in the median plane, which were measured in our lab using different measurement conditions, techniques, and source positions, can be modeled with reasonable accuracy. All subjects, involved in the subjective listening test, reported not only the accurate vertical perception but also the front-back discrimination with the modeled HRIRs based on 12 basis functions.

Sound Quality Evaluation and Grade Construction of the Level D Noise for the Vehicle Using MTS (MTS기법을 이용한 차량 D단 소음의 음질 평가 및 음질 등급화 구축)

  • Park, Sang-Gil;Park, Won-Sik;Sim, Hyoun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.393-399
    • /
    • 2008
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. And, optimal characteristic values influenced on the result of the SQ evaluation were derived by signal to noise ratio(SN ratio) of the Taguchi method. Finally, the new method to evaluate SQ is constructed using Mahalanobis-Taguchi system(MTS). Furthermore, the MTS method for SQ evaluation was compared by the result of SQ grade table at the previous study and their virtues and faults introduced.

Optimal Design of Brake System considering Vehicle Vibration and Durability of Rotor (차량진동 및 Rotor 내구특성을 고려한 Brake System 의 최적설계)

  • Kim, B.S.;Kim, H.Y.;Kim, K.W.;Son, Y.K.;Lee, D.G.;Park, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.764-769
    • /
    • 2001
  • Brake-induced vibrations of a vehicle such as brake judder are determined by the excitation of brake torque variations and by their transfer to the driver's contact points via suspension, body and steering system. The formation of brake torque variation is mainly determined by static and dynamic disk thickness variations. The vibration transfer from the excitation by brake torque variation to the perception by the driver depends on the kinematic and dynamic behaviour of the components in the transfer path. Optimization of the judder performance can be achieved either by minimizing the excitation or by reduction of the judder sensitivity of the vehicle. In this paper, the optimization process of a front rotor is suggested to reduce brake judder considering the cooling performance of the rotor, the judder sensitivity of the vehicle and durability of the rotor.

  • PDF

Experimental Study on Subjective Evaluation of Car Interior Sound Quality (승용차 내부소음의 음질평가 실험연구)

  • 최병호;아우구스트쉬크
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.177-182
    • /
    • 2003
  • This study is directed toward determining the number and characteristics of psychologically meaningful perceptual dimensions required for assessing the sound Ouaiity with respect to vehicle interior and/or exterior noises. and toward identifying the acoustical or psychoacoustical bases underlying the perception. By nonmetric MDS and clustring analysis of sound quality data sets on our own, of critical importance are two perceptual dimensions for which subjective verdicts can be interpreted as loudness and sharpness. The perceptual dimensions based upon similarity judgments could be accounted for 48% and 24% of the variance. each of which might be a match for the acoustic parameter "A-weighted maximum pressure level"(r= .85) and for the psychoacoustic parameter "sharpness" (r= .65), respectively. On the other hand, the perceptual dimensions based upon preference ratings could explain 66% and 10% of the variance. where the acoustic parameter "A-weighted maximum pressure leve"(r= .92) might be taken to be a best predictor, but sharpness appeared to be less suitable for the description of Preference behavior. Linked to the results, the problems of quantitative modelling of subjective sound quality evaluation and also of implementing corresponding cognitive combination rule for technical and industrial applications, say having "winner-sound qualify" according to preference criteria will be shortly in discussion.

  • PDF