• Title/Summary/Keyword: Vibration of Joint

Search Result 440, Processing Time 0.028 seconds

Lateral Vibration of Beams with a Bonded Lap Joint and Partial Layered Dampers (겹침이음부 및 국부적 층댐퍼를 갖는 보의 횡진동 특성)

  • 박정일;최낙삼
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.174-183
    • /
    • 1999
  • An analytical model for the lateral vibration of beams with a bonded lap joint and partial layered dampers has been proposed in this paper. Both shear and normal forces acting along the interface between the elastic and viscoelastic layers were considered in the vibration analysis. Analytical results were compared with those obtained by a finite element method. Effects of the size and location of layers in partial dampers on system loss factor($\eta_s$) and resonant frequency($\omega_r$) were studied. which showed that partial dampers adhered to the site exhibiting the maximum amplitude of vibration were most influential in the increase of $\eta_s$ and the decrease of $\omega_r$. Specific system loss factor( $\eta_s$ divided by total mass of system) was also evaluated in the analysis.

  • PDF

Experimental Study of Adaptive Sliding Mode Control for Vibration of a Flexible Rectangular Plate

  • Yang, Jingyu;Liu, Zhiqi;Cui, Xuanming;Qu, Shiying;Wang, Chu;Lanwei, Zhou;Chen, Guoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.28-40
    • /
    • 2015
  • This paper aims to address the intelligent active vibration control problem of a flexible rectangular plate vibration involving parameter variation and external disturbance. An adaptive sliding mode (ASM) MIMO control strategy and smart piezoelectric materials are proposed as a solution, where the controller design can deal with problems of an external disturbance and parametric uncertainty in system. Compared with the current 'classical' control design, the proposed ASM MIMO control strategy design has two advantages. First, unlike existing classical control algorithms, where only low intelligence of the vibration control system is achieved, this paper shows that high intelligent of the vibration control system can be realized by the ASM MIMO control strategy and smart piezoelectric materials. Second, the system performance is improved due to two additional terms obtained in the active vibration control system. Detailed design principle and rigorous stability analysis are provided. Finally, experiments and simulations were used to verify the effectiveness of the proposed strategy using a hardware prototype based on NI instruments, a MATLAB/SIMULINK platform, and smart piezoelectric materials.

The Analysis of GRF and joint angles of young and older adult by Vibration Stimulation on the Ankle-Joint in stair-descent activity (족관절에 인가한 진동자극이 계단 하강 동작에서 청년과 노인의 관절각도와 지면반발력에 미치는 영향)

  • So, H.J.;Kwak, K.Y.;Kim, S.H.;Yang, Y.S.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.61-73
    • /
    • 2011
  • The purpose of this study was to investigate changes in the center of pressure (COP), ground reaction force (GRF) and joint angles of elderly people and young people while stair-descent. The participants in this experiment were 5 elderly people and 5 young people, each of which was asked to descend stairs of three different heights (8 cm, 16 cm, and 32 cm). As they climbed down the stairs, they received vibration stimulation on the lower limb. The change of COP, GRF and joint angles were analyzed during the standing phase. COP decreased as the Achilles tendon and tibialis anterior tendon were vibrated. Vertical GRF increased as the Achilles tendon was vibrated, and the joint angle differed according to vibration stimulation conditions. These results mean that ankle joint, knee joint and hip joint were influenced by the vibrations on the lower limb as the participants descended the stairs. It was concluded that the vibration stimulation on the lower limb allowed the participants to efficiently climb down the stairs.

Effect of Muscle Function and Muscular Reaction of Knee Joint in the Twenties on the Whole Body Vibration Exercise (전신진동운동이 20대 성인남녀의 슬관절 근기능과 근반응성에 미치는 영향)

  • Kang, Seung Rok;Jeong, Gu Young;Bae, Jong Jin;Min, Jin Young;Yu, Chang Ho;Kim, Jung Ja;Kwon, Tae Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.762-768
    • /
    • 2013
  • This study investigated the effect of whole-body vibration on muscle function and muscular reaction in the knee joint. We recruited thirty healthy subjects and divided them into a training group, who experienced whole-body vibration, and a control group, who did not. The training group performed whole-body vibration exercises for 30 min per day, 3 days a week, for 8 weeks. We measured knee joint torque to estimate muscle strength and reaction, using BIODEX System 3. Knee joint peak torque and total work performed increased significantly in the training group, and muscle acceleration time decreased. These results suggest that stimulation by whole-body vibration can improve muscle strength and reaction by improving muscle tone and increasing blood temperature and flow speed in muscular fiber. Our results also indicate that 4 weeks of exercise with whole-body vibration is required to improve the reaction response, and six weeks to improve strength.

The Effects of Vibration Exercise after Modified Bröstrom Operation in Soccer Players with Ankle Instability

  • Kim, Sanghoon;Kim, Yangrae;Kim, Yongyoun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.2
    • /
    • pp.1791-1796
    • /
    • 2019
  • Background: Vibration exercise after ankle surgery improves proprioception and ankle muscle strength through vibration stimulation. Objective: To examine the effects of vibration exercise on the ankle stability. Design: Randomized controlled clinical trial (single blind) Methods: Twenty soccer players were randomly divided into experimental group and control group. The Vibration exercise program was conducted 12 weeks and 3 times a week. Ankle joint proprioceptive sensory test and Isokinetic muscle strength test were performed using Biodex system pro III to measure plantar flexion / dorsiflexion and eversion / inversion motion. Results: The result of isokinetic test of ankle joint is showed significant improvement in all measurement items, such as leg flexion, lateral flexion, external and internal muscle forces, compared to previous ones by performing vibration movements for 12 weeks. However, in the comparison group, plantar flexor ($30^{\circ}$), eversion muscle ($120^{\circ}$), inversion ($30^{\circ}$) of limb muscle strength were significantly improved compared with the previous phase; was no significant difference in dorsi-flexion. There was no significant difference between groups in all the items. Conclusions: In this study, we analyzed the effects of rehabilitation exercise on soccer players who had reconstructed with an ankle joint ligament injury through vibration exercise device. As a result, we could propose an effective exercise method to improve the ability, and confirmed the applicability as an appropriate exercise program to prevent ankle injuries and help quick return.

Vibration Control of a Knee Joint System considering Human Vibration of the New R.G.O. for a Rehabilitation Trainning of Paraplegia (II) (척수마비환자 재활훈련용 보행보조기의 인체진동을 고려한 무릎관절 시스템 진동제어(II))

  • Kim, Myung-Hoe;Jang, Dae-Jin;Baek, Yun-Soo;Park, Young-Pil;Park, Chang-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.446-452
    • /
    • 2002
  • This paper Presents a 3-D design and a Vibration control of a new walking R.G.O.(Robotic Gait Orthosis) and would like to develop a simulation by this walking system. The vibration control and evaluation of the new knee joint mechanism on the biped walking R.G.O.(Robotic Gait Orthosis) was a very unique system and was to obtain by the 3-axis accelerometer with a low frequency vibration for the paraplegia It will be expect that the spinal cord injury patients are able to recover effectively by a biped walking R.G.O.. The new knee joint system of both legs were adopted with a good kinematic characteristics. It was designed attached a DC-srevo motor and controller, with a human wear type. It was able to accomodate itself to a environments of S.C.I. Patients. It will be expect that the spinal cord injury patients are able to recover effectively by a new walking R.G.O. system.

  • PDF

Vibration Power Flow Analysis of Coupled Shell Structures (연성된 쉘 구조물의 진동 파워흐름해석)

  • Kim, Il-Hwan;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.352.2-352
    • /
    • 2002
  • In this paper, Power Flow Analysis (PFA) method has been applied to the prediction of vibration energy density and intensity of coupled shell structures in the medium-to-high frequency ranges. To consider the wave transformation at joint between shell elements, power transmission and reflection coefficients are investigated for various joint angles, and here Donnell-Mushtari thin shell theory has been used. (omitted)

  • PDF

Application of High Damping Alloys for Vibration Reduction in Bridge Expansion Joints (Fe-Mn 제진합금을 적용한 교량용 신축이음장치의 진동저감 효과에 관한 연구)

  • Kim, T.H.;Baik, J.H.;Han, D.W.;Kim, J.C.;Baik, S.H.;Yoo, M.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1019-1023
    • /
    • 2006
  • Conventional methods for reducing vibration in engineering designs may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Fe-Mn Damping alloy with a combination of high damping capacity and good mechanical properties can provide attractive technical and economical solutions to problems involving seismic, shock and vibration isolation. We have studied the noise and vibration characteristic of Dampalloy and checked Dampalloy reduced noise about 3.9dB and vibration about 15.9 times as compared conventional material through laboratory research. With this result, we obtained a good possibility of material substitution about the bridge expansion joint

  • PDF

Effects of the Whole-body Vibration Exercise Combined with Ankle Joint Mobilization on the Gait Function and Balancing Ability in Stroke Patients: A Preliminary Randomized, Controlled Study (발목관절 가동술과 결합한 전신진동운동이 뇌졸중 환자의 보행 기능과 균형 능력에 미치는 영향: 무작위 대조 예비연구)

  • Su-Bong, Son;Kyoung-Wook, Choi;Tae-Wu, Kim;Sang-Young, Park;Yong-Jun, Cha
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2022
  • PURPOSE: This study was performed to investigate the effects of the whole-body vibration exercise combined with ankle joint mobilization on the gait and balancing ability in patients with hemiplegic stroke. METHODS: A total of 19 patients at a rehabilitation hospital who had suffered a hemiplegic stroke were randomly assigned to the experimental group (whole-body vibration exercise combined with ankle joint mobilization, n=10) or control group (whole-body vibration exercise, n=9). All participants underwent 30 min of comprehensive rehabilitation therapy (5 × /week for 6 weeks). Additionally, the experimental group performed the whole body vibration exercise and ankle joint mobilization (15 minutes each, 30 minutes total, 3 × / week for 6 weeks). In the control group, only the whole- body vibration exercise was performed in the same manner and not the ankle joint mobilization. The gait and balancing abilities were measured before and after the 6-week training. RESULTS: Significant improvements were observed in the 10-m walk test, timed up-and-go (TUG) test, center of pressure (COP) path length, and COP path velocity in the experimental group (p < .05). The experimental group showed a larger decrease in the COP path length and velocity than the control group (COP path length, -10.27 mm vs. -3.67 mm, p < .05; COP path velocity, -.33 cm/sec vs. -.13 cm/sec, p < .05, respectively). CONCLUSION: The whole-body vibration exercise combined with ankle joint mobilization could be effective in improving the gait and balancing ability of stroke patients and could also be more effective for improving the static balance ability than the general whole-body vibration exercise alone.

Numerical Study for Prediction of Rock Falls Around Jointed Limestone Underground Opening due to Blast Vibration (발파진동에 의한 절리암반 지하공동의 낙석발생 예측에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.10-16
    • /
    • 2016
  • Recently, transition from open pit to underground mining in limestone mines is an increasing trend in Korea due to environmental issues such as noise, dust and vibrations caused by crushers and equipment. The severe damages in the surrounding rock mass of underground opening caused by explosive blasting may lead to rock fall hazards or casualties. It is well known that variables which mainly affect blast-induced rock falls in underground mining are: blast vibration level, joint orientation and distribution and shape of the cross sections of underground structures. In this study, UDEC program, which is a DEM code, is used to simulate blast vibration-induced rock fall in underground openings. Variation of joint space, joint angle and joint normal stiffness was considered to investigate the effect of joint characteristics on the blast vibration-induced rock fall in underground opening. Finally, jointed rock mass models considering blast-induced damage zone were examined to simulate the critical blast vibration value which may cause rock falls in underground opening.