• 제목/요약/키워드: Vibration modes

검색결과 1,271건 처리시간 0.032초

STUDY OF CORE SUPPORT BARREL VIBRATION MONITORING USING EX-CORE NEUTRON NOISE ANALYSIS AND FUZZY LOGIC ALGORITHM

  • CHRISTIAN, ROBBY;SONG, SEON HO;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.165-175
    • /
    • 2015
  • The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

구조물 진동.소음의 수치해석시 최적 요소크기는 .lambda./4이다. (Optimum mesh size of the numerical analysis for structural vibration and noise prediction)

  • 김정태;강준수
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1950-1956
    • /
    • 1997
  • An engineering goal in vibration and noise professionals is to develope quiet machines at the preliminary design stage, and various numerical techniques such as FEM, SEA or BEM are one of the schemes toward the goal. In this paper, the research has been focused on the sensitivity effect of mesh sizes for FEM application so that the optimum size of the mesh that leads to engineering solution within acceptable computing time could be generated. In order to evaluate the mesh size effect, three important parameters have been examined : natural frequencies, number of modes and driving point mobility. First, several lower modes including the fundamental frequency of a 2-D plate structure have been calculated as mesh size changes. Since theoretical values of natural frequencies for a simple structure are known, the deviation between the numerical and theoretical values is obtained as a function of mesh size. The result shows that the error is no longer decreased if the mesh size becomes a quarter wavelength or smaller than that. Second, the mesh size effect is also investigated for the number of modes. For the frequency band up to 1.4 kHz, the structure should have 38 modes in total. As the mesh size reaches to the quarter wavelength, the total count in modes approaches to the same values. Third, a mobility function at the driving point is compared between SEA and FEM result. In SEA application, the mobility function is determined by the modal density and the mass of the structure. It is independent of excitation frequencies. When the mobility function is calculated from a wavelength to one-tenth of it, the mobility becomes constant if the mesh becomes a quarter wavelength or smaller. We can conclude that dynamic parameters, such as eigenvalues, mode count, and mobility function, can be correctly estimated, while saving the computing burden, if a quarter wavelength (.lambda./4) mesh is used. Therefore, (.lambda./4) mesh is recommended in structural vibration analysis.

경부고속철도 교량의 과도한 가속도의 저감방안에 대한 연구 (A Study on the Solution of Excessive Accelerations on the Bridge for Gyeongbu High-speed Railway)

  • 곽종원;진원종;최은석;조정래;이정우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.477-485
    • /
    • 2007
  • When Korean High Speed Train (KTX) runs over a high-speed railway bridge, the high-speed railway bridge gives quite large acceleration response. Local vibration at the large cross section, the impact from equally spaced sleepers, the vibration due to elastomeric bearings, and the vibration from the train itself are the causes of this acceleration response. Maximum peaks of the accelerations measured at the bridges are sometimes going over the limit value. Although it is smaller than 0.35G, the limit from the Korean Bridge Design Manual(BRDM), this acceleration response should be reduced for the safety of running trains with high speed. In this paper, to reduce the acceleration response by controlling excessive local vibration at the large cross section, vibration reduction method is studied. The result shows that the effect of elastomeric bearings on the vibration of the bridge is very large and that the vibration reduction device is effective against wing mode local vibration PSC box girder bridge for the high-speed railway, which usually has very large cross section, although it has little effect on global vibration modes such as flexural and twisting modes. The test of the vibration reduction device on the bridge in service has been performed in this study.

  • PDF

근접장 광기록용 서스펜션의 최적설계 (Optimal Design of a Near-field Optical Recording Suspension)

  • 조태민;임경화
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.295-302
    • /
    • 2004
  • In this study the optimization of a NFR suspension is performed using finite element method and experimental modal analysis. NFR suspensions are required to have low compliance modes to allow the slider to comply with the rotating disk, and high tracking stiffness modes to maximize the servo bandwidth of the tracking controller First of all, the dual suspension model is designed based on the characteristics of NFR drives. And the parametric study on the sensitivities of compliance modes and tracking stiffness modes is investigated. Finally, the model satisfying static characteristics is selected and shape optimization is performed to improve dynamic characteristics. A prototype of a NFR suspension is made by etching and modal ekperiment in free state is performed. The results of experiment almost agree with those of finite element method.

모듈형 부유구조물의 커넥터 강도에 따른 고유모드 고찰 (Investigation of natural modes of moduled floating structure considering connector stiffness)

  • 김병완;홍사영;경조현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.348-351
    • /
    • 2007
  • This paper investigates the natural modes of moduled floating structure with module unit connector. As an example structure, a floating parking place($120m{\times}60m$) is considered. In the evaluation of natural modes, numerical equations are formulated by FEM(Finite Element Method) and the natural modes are solved by the subspace iteration method. By comparing results for various stiffness of module unit connector, the effect of stiffness of unit connector is examined.

  • PDF

모듈형 부유구조물의 유닛 크기 및 커넥터 강도에 따른 고유모드 고찰 (Investigation of Natural Modes of Moduled Floating Structure Considering Unit Size and Connector Stiffness)

  • 김병완;홍사영;경조현
    • 한국소음진동공학회논문집
    • /
    • 제18권3호
    • /
    • pp.356-360
    • /
    • 2008
  • This paper investigates the natural modes of moduled floating structure with module unit connector. As an example structure, a floating parking place($120m\;{\times}\;60m$) is considered. In the evaluation of natural modes, numerical equations are formulated by FEM(finite element method) and the natural modes are solved by the subspace iteration method. By comparing results for various sizes of module unit, the effect of unit size is investigated. By comparing results for various stiffness of module unit connector, the effect of stiffness of unit connector is also examined.

모듈형 부유구조물의 고유모드 고찰 (Natural modes of modularized floating structures)

  • 김병완;홍사영;경조현;조석규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1173-1176
    • /
    • 2007
  • This paper investigates the natural modes and static reponses of modularized floating structure. As an example structure, a floating parking place$(120m{\times}60m)$ is considered. In the evaluation of natural modes and static responses, numerical equations are formulated by FEM(Finite Element Method) and the natural modes are solved by subspace iteration method. By comparing responses of structures of various sizes of module unit, the effect of unit size is also investigated.

  • PDF

연식주퇴 시스템의 오류모드 제어기법에 관한 연구 (A Study on Fault Mode Control of a Soft Recoil System)

  • 신철봉;배재성;황재혁;강국정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.255-259
    • /
    • 2008
  • A soft-recoil system, which is a new technology, can dramatically reduce a recoil force. Due to the inaccurate explosion, various fault modes may happen. These fault modes can cause the serious damage of the recoil system and must be suppressed to avoid them. In the present study, the fault mode control method of the soft-recoil system is investigated. A hydraulic damper is working under normal mode and a MR damper is additionally working when the fault modes happen. In the design of the fault mode controller, the detection method of the fault mode is important as well as its suppression. The results of the simulation show that the soft-recoil system performs when the fault modes happen.

  • PDF

탄성기초위에 놓인 파이프의 고유치 분기와 플러터 모드 (Eigenvalue Branches and flutter Modes of Pipes on Elastic Foundations)

  • 류봉조;류시웅;김희중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.486-491
    • /
    • 2003
  • The paper presents the relationship between the eigenvalue branches and the corresponding flutter modes of cantilevered pipes conveying fluid. The pipes are located on elastic foundations which can be regarded as a soil model. In this paper, elastic foundations are assumed as linear distributed translational springs. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The critical How velocity and stability maps of the pipe are investigated according to the variation of elastic foundation parameters, mass ratios of the pipe and internal damping Parameter. Also, the vibrational modes associated with flutter are shown.

  • PDF

근접장 광기록용 서스펜션의 최적설계 (Optimal Design of a Near-field Optical Recording Suspension)

  • 조태민;임경화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1146-1151
    • /
    • 2003
  • So far the study of near-field optical recording(NFR) suspensions has not been investigated sufficiently. In this study the optimization of a NFR suspension is performed using finite element method. NFR suspensions are required to have low compliance modes to allow the slider to comply with the rotating disk, and high tracking stiffness modes to maximize the servo bandwidth of the tracking controller First of all, a basic integrated type suspension model is obtained using topology optimization And the parametric study on the sensitivities of the compliance modes and tracking stiffness modes is performed. Finally, a model satisfying static characteristics is elected and shape optimization is performed to improve dynamic characteristics.

  • PDF