• Title/Summary/Keyword: Vibration mode shape

Search Result 599, Processing Time 0.029 seconds

A Study on the Combined Use of Exact Dynamic Elements and Finite Elements (엄밀한 동적 요소와 유한 요소 통합 해석 방법에 관한 연구)

  • 홍성욱;조용주;김종선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.141-149
    • /
    • 2002
  • Although the finite element method has become an indispensible tool for the dynamic analysis of structures, difficulty remains to quantify the errors associated with discretization. To improve the modeling accuracy, this paper proposes a method to make a combined use of finite elements and exact dynamic elements. Exact interpolation functions for the Timoshenko beam element are derived using the exact dynamic element modeling (EDEM) and compared with interpolation functions of the finite element method (FEM). The exact interpolation functions are tested with the Laplace variable varied. A combined use of finite element method and exact interpolation functions is presented to gain more accurate mode shape functions. This paper also presents a combined use of finite elements and exact dynamic elements in design/reanalysis problems. Timoshenko flames with tapered sections are tested to demonstrate the design procedure with the proposed method. The numerical study shows that the combined use of finite element model and exact dynamic element model is very useful.

Optimal sensor placements for system identification of concrete arch dams

  • Altunisik, Ahmet Can;Sevim, Baris;Sunca, Fezayil;Okur, Fatih Yesevi
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.397-407
    • /
    • 2021
  • This paper investigates the optimal sensor placements and capabilities of this procedure for dynamic characteristics identification of arch dams. For this purpose, a prototype arch dam is constructed in laboratory conditions. Berke arch dam located on the Ceyhan River in city of Osmaniye is one of the highest arch dam constructed in Turkey is selected for field verification. The ambient vibration tests are conducted using initial candidate sensor locations at the beginning of the study. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to extract experimental dynamic characteristics. Then, measurements are repeated according to optimal sensor locations of the dams. These locations are specified using the Effective Independence Method. To determine the optimal sensor locations, the target mode shape matrices which are obtained from ambient vibration tests of the selected dam with a large number of accelerometers are used. The dynamic characteristics obtained from each ambient vibrations tests are compared with each other. It is concluded that the dynamic characteristics obtained from initial measurements and those obtained from a limited number of sensors are compatible with each other. This situation indicates that optimal sensor placements determined by the Effective Independence Method are useful for dynamic characteristics identification of arch dams.

Damage Detection in Time Domain on Structural Damage Size (구조물의 손상크기에 따른 시간영역에서의 손상검출)

  • Kwon Tae-Kyu;Yoo Gye-Hyoung;Lee Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.119-127
    • /
    • 2006
  • A non-destructive time domain approach to examine structural damage using parameterized partial differential equations and Galerkin approximation techniques is presented. The time domain analysis for damage detection is independent of modal parameters and analytical models unlike frequency domain methods which generally rely on analytical models. The time history of the vibration response of the structure was used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficients. This is a part of our ongoing effort on the general problem of modeling and parameter estimation for internal damping mechanisms in a composite beam. Namely, in detecting damage through time-domain or frequency-domain data from smart sensors, the common damages are changed in modal properties such as natural frequencies, mode shapes, and mode shape curvature. This paper examines the use of beam-like structures with piezoceramic sensors and actuators to perform identification of those physical parameters, and detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different locations and different dimensions. It is demonstrated that the method can sense the presence of damage and obtain the position of a damage.

Application of recursive SSA as data pre-processing filter for stochastic subspace identification

  • Loh, Chin-Hsiung;Liu, Yi-Cheng
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.

An exact solution for free vibrations of a non-uniform beam carrying multiple elastic-supported rigid bars

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.399-416
    • /
    • 2010
  • The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-step beam carrying multiple rigid bars, with each of the rigid bars possessing its own mass and rotary inertia, fixed to the beam at one point and supported by a translational spring and/or a rotational spring at another point. Where the fixed point of each rigid bar with the beam does not coincide with the center of gravity the rigid bar or the supporting point of the springs. The effects of the distance between the "fixed point" of each rigid bar and its center of gravity (i.e., eccentricity), and the distance between the "fixed point" and each linear spring (i.e., offset) are studied. For a beam carrying multiple various concentrated elements, the magnitude of each lumped mass and stiffness of each linear spring are the well-known key parameters affecting the free vibration characteristics of the (loaded) beam in the existing literature, however, the numerical results of this paper reveal that the eccentricity of each rigid bar and the offset of each linear spring are also the predominant parameters.

A new method to detect cracks in plate-like structures with though-thickness cracks

  • Xiang, Jiawei;Nackenhorst, Udo;Wang, Yanxue;Jiang, Yongying;Gao, Haifeng;He, Yumin
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.397-418
    • /
    • 2014
  • In this paper, a simple two-step method for structural vibration-based health monitoring for beam-like structures have been extended to plate-like structures with though-thickness cracks. Crack locations and severities of plate-like structures are detected using a hybrid approach. The interval wavelet transform is employed to extract crack singularity locations from mode shape and support vector regression (SVR) is applied to predict crack serviettes form crack severity detection database (the relationship of natural frequencies and crack serviettes) using several natural frequencies as inputs. Of particular interest is the natural frequencies estimation for cracked plate-like structures using Rayleigh quotient. Only the natural frequencies and mode shapes of intact structures are needed to calculate the natural frequencies of cracked plate-like structures using a simple formula. The crack severity detection database can be easily obtained with this formula. The hybrid method is investigated using numerical simulation and its validity of the usage of interval wavelet transform and SVR are addressed.

Studies on the Vibrational Modal Analysis of Solid Woods for making the Violin - Part 2. The effects of coating materials on the resonant frequency of European spruce and maple

  • Chung, Woo-Yang;Park, Sun-Haeng
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.45-51
    • /
    • 2000
  • It was thought that the stiffness of a coated specimen became lower than that of the solid wood because the stiffness of the dried film of coating material is lower than that of the solid wood. The authors were trying to compare the effect of lacquer varnish and rhus lacquer on the resonant frequency of the solid woods for the violin, spruce and maple. Vibration modal shape of coated specimens were same to those of solid woods, but the frequency became lower at each mode as were expected regardless of coat. frequency decrement of coated specimen was getting larger at upper mode in both European violin woods, however, rhus lacquer coated spruce specimens were less affected than lacquer varnish coated specimens.

  • PDF

Damage detection of multi-storeyed shear structure using sparse and noisy modal data

  • Panigrahi, S.K.;Chakraverty, S.;Bhattacharyya, S.K.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1215-1232
    • /
    • 2015
  • In the present paper, a method for identifying damage in a multi storeyed shear building structure is presented using minimum number of modal parameters of the structure. A damage at any level of the structure may lead to a major failure if the damage is not attended at appropriate time. Hence an early detection of damage is essential. The proposed identification methodology requires experimentally determined sparse modal data of any particular mode as input to detect the location and extent of damage in the structure. Here, the first natural frequency and corresponding partial mode shape values are used as input to the model and results are compared by changing the sensor placement locations at different floors to conclude the best location of sensors for accurate damage identification. Initially experimental data are simulated numerically by solving eigen value problem of the damaged structure with inclusion of random noise on the vibration characteristics. Reliability of the procedure has been demonstrated through a few examples of multi storeyed shear structure with different damage scenarios and various noise levels. Validation of the methodology has also been done using dynamic data obtained through experiment conducted on a laboratory scale steel structure.

Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures (면진구조물 내 층응답스펙트럼 작성을 위한 고려사항)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소모델수정)

  • Kim, Hack-Jin;Yu, Eun-Jong;Kim, Ho-Geun;Lee, Sang-Hyun;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.647-652
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centro(NS, 1942) ground motion histories with different Peak Ground Acceleration(PGA) ranging from 0.06g to 0.50g. For model updating, flexural stiffness values of structural members(walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions(i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of inputs for updating(i.e. transfer function and natural frequencies). The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters(i.e. flexural stiffness values).

  • PDF