• 제목/요약/키워드: Vibration mitigation

검색결과 180건 처리시간 0.028초

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

머드플랩이 개선된 KTX차량의 궤도구간별 실내소음 특성에 관한 연구 (A Study on the Interior Noise Characteristics of KTX with Improved Mud Flap for Various Track Conditions)

  • 김진호;김우리;박대근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.345-349
    • /
    • 2006
  • There has been an increasing demand for the mitigation of noise and vibration caused by KTX. One of considered noise reduction methods which is to enlarge mud-flap in gangway was selected and the replacement of all KTX mud-flaps by improved mud-flaps was completed recently. To investigate the noise characteristics of KTX with improved mud-flap, the measurement was performed. Based on the measurement results, the assessment of noise level, noise characteristics by speed and pure tone analysis for various track conditions was executed. It is shown that the use of improved mud-flap is effective to reduce the interior noise of KTX.

  • PDF

접속부의 강성완화를 위한 Approach zone의 매개분석 (Approach zone of parametric analysis for hardness mitigation of connection)

  • 손지현;최진유;오지택;황원섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.558-564
    • /
    • 2006
  • When vehicles pass the connection between the bridge and earthwork, the difference of both sections' stiffness produces an increasing wheelload. As a consequence, it results in the excessive vibration of vehicles and the damage of bearing system. In general, steel plate girder railway bridges without ballast track have larger stiffness than the bridge with ballast, and produces larger impulse on the bridge superstructure. Thus, it is necessary to reduce the differences of both stiffness. This study presents parametric studies on the behavior of plate girder bridges and their tracks by means of various stiffnesses and the length of approach zone. The results of numerical study showed that the smaller the stiffness of both sides and the longer the length of approach zone, the variation of wheelload becomes smaller. Hence, it gives less burden into the plate girder bridges and their tracks. It is expected that the results of parametric study can be used as a preliminary data for the determination of economical length on the approach zone and the stiffness of both sides.

  • PDF

Experimental study on lead extrusion damper and its earthquake mitigation effects for large-span reticulated shell

  • Yang, M.F.;Xu, Z.D.;Zhang, X.C.
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.481-496
    • /
    • 2015
  • A Lead Extrusion Damper (LED) is experimentally studied under various frequencies and displacement amplitudes. Experimental results show that the force-displacement hysteresis loops of the LED are close to rectangular and the force-velocity hysteresis loops exhibit nonlinear hysteretic characteristic. Also, the LED can provide consistent energy dissipation without any stiffness degradation. Based on the experimental results, a mathematical model is then proposed to describe the effects of frequency and displacement on property of LED. It can be proved from the comparison between experimental and numerical results that the mathematical model can accurately describe the mechanical behavior of LED. Subsequently, the seismic responses of the Schwedler reticulated shell structure with LEDs are analyzed by ANSYS software, in which three different installation forms of LEDs are considered. It can be concluded that the LED can effectively reduce the displacement and acceleration responses of this type of structures.

Application of monodisperse Fe3O4 submicrospheres in magnetorheological fluids

  • Anupama, A.V.;Kumaran, V.;Sahoo, B.
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.347-357
    • /
    • 2018
  • Steady shear response of a magnetorheological fluid (MRF) system containing porous mono-disperse magnetite ($Fe_3O_4$) spheres synthesized by solvothermal method is demonstrated. In applied magnetic field the interaction between the spherical particles leads to form strong columnar structures enhancing the yield strength and viscosity of the MRFs. The yield strengths of the MRFs also scale up with the concentration of magnetic particles in the fluid. Considering magnetic dipolar interaction between the particles the magneto-mechanical response of the MRFs is explained. Unlike metallic iron particles, the low-density corrosion resistant soft-ferrimagnetic $Fe_3O_4$ spherical particles make our studied MRF system efficient and reliable for shock-mitigation/vibration-isolation applications.

Optimal deep machine learning framework for vibration mitigation of seismically-excited uncertain building structures

  • Afshin Bahrami Rad;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.535-549
    • /
    • 2023
  • Deep extreme learning machine (DELM) and multi-verse optimization algorithms (MVO) are hybridized for designing an optimal and adaptive control framework for uncertain buildings. In this approach, first, a robust model predictive control (RMPC) scheme is developed to handle the problem uncertainty. The optimality and adaptivity of the proposed controller are provided by the optimal determination of the tunning weights of the linear programming (LP) cost function for clustered external loads using the MVO. The final control policy is achieved by collecting the clustered data and training them by DELM. The efficiency of the introduced control scheme is demonstrated by the numerical simulation of a ten-story benchmark building subjected to earthquake excitations. The results represent the capability of the proposed framework compared to robust MPC (RMPC), conventional MPC (CMPC), and conventional DELM algorithms in structural motion control.

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.

지진하중을 받는 곡선교량의 동적거동 (Dynamic Behavior of Curved Bridges under Seismic Loading)

  • 박남회;윤기용;강영종
    • 한국방재학회 논문집
    • /
    • 제5권3호
    • /
    • pp.11-21
    • /
    • 2005
  • 곡선교량의 복잡한 동적거동을 이해하고, 내진해석시 합리적인 해석방법을 선정할 수 있는 기초적인 연구를 수행하기 위하여 ??자유도를 포함한 절점당 7자유도를 갖는 곡선보요소와 직선보요소를 갖는 동적유한 요소해석 프로그램을 사용하여 곡선교량의 내진해석을 수행하였다. 자유진동해석 결과로부터 곡선교량의 모드특성을 직선교량과 비교하여 분석하였다. 또한, 동일지간장을 갖는 직선교와 곡선교의 지진시 거동특성을 분석하고, AASHTO의 정규교량으로 분류된 곡선교량의 내진해석방법에 대해 비교하였다. 또한, 지진하중작용방향과 곡선교량의 내부중심각을 변화시켜 곡선교량의 동적거동을 파악하였다.

PSC I형 단순 철도교량의 동적사용성 평가 (Dynamic Serviceability Estimation of the Simple Railway Bridge with PSC I Girder)

  • 강성후;최태근;박선준;김성일
    • 한국방재학회 논문집
    • /
    • 제9권1호
    • /
    • pp.65-71
    • /
    • 2009
  • 본 연구에서는 기존의 25 m 지간을 갖는 PSC I형 단순 철도교에 대해 고속 및 일반 열차하중으로 인한 동적거동을 분석하여 철도교량의 동적사용성을 평가하였다. 고유진동수는 8Hz 대역으로 평가되어 철도교량의 적정 고유진동수 범위 내에 들어있으며, 공진발생 가능성은 없는 것으로 나타났다. 가속도 응답은 무궁화호 열차 주행 시 제한 값 0.35 g를 초과하는 0.43 g가계측되었다. 또한 단부꺽임각은 고속철도의 설계기준을 만족하지 못하였으며 충격계수와 처짐은 모두 설계기준을 만족하였다. 결과적으로 25 m 지간을 갖는 PSC I형 단순 철도교의 경우 다양한 열차하중에 대하여 동적사용성을 부분적으로 확보하고 있는 것으로 나타났으나 진동가속도 응답을 감소시키기 위한 대책이 필요할 것으로 판단된다.

원심모형시험을 이용한 DCM 처리지반의 안정성 평가 (Stability Analysis of DCM treated Ground Using Centrifuge Test)

  • 김병일;유완규;이승현;한진태
    • 한국방재학회 논문집
    • /
    • 제11권3호
    • /
    • pp.105-110
    • /
    • 2011
  • 최근 해상 연약지반 개량공법으로 저소음, 저진동으로 공해가 적고, 단시간에 큰 강도를 얻을 수 있는 심층혼합공법이 널리 사용되고 있다. 본 연구에서는 이러한 심층혼합공법 중 하나인 DCM(Deep Cement Mixing) 공법에 대하여 다양한 점토-시멘트 배합비를 갖는 공시체를 제작하여 일축압축강도시험을 수행하고 그 결과를 이용하여 적절한 점토-시멘트 배합비를 제안하고자 하였으며, 원심모형시험을 이용하여 접원식 및 벽식 DCM 공법 적용 현장의 케이슨 구조물 안정성을 평가하였다. 일축압축 시험결과 DCM 공법의 최적 점토-시멘트 배합비는 28.5%로 나타났다. 또한 원심모형시험 결과 DCM 공법으로 처리된 지반위에 놓인 케이슨 구조물의 안정성을 확인하였으나, 벽식 DCM 공법이 접원식 DCM 공법에 비해 케이슨 구조물의 수평 변위에 대해서는 7%, 침하에 대해서는 39% 정도 지반개량효과가 다소 크게 나타났다.