• Title/Summary/Keyword: Vibration in a Motion

Search Result 1,905, Processing Time 0.035 seconds

Immediate Effects of Vibration Stimulation on the Range of Motion and Proprioception in Patients with Chronic Ankle Instability: Randomized Crossover Study (만성발목불안정성 환자의 진동자극이 가동범위 및 고유수용성감각에 미치는 즉각적인 효과: 무작위 교차 연구)

  • Chi-Bok Park;Sung-Hwan Park;Ho-Jin Jeong;Byeong-Geun Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • PURPOSE: This study examined the effect of vibration stimulation of a vibration foam roller on the change in the range of motion of the ankle joint and proprioception in patients with chronic ankle instability. An additional aim was to provide basic data for rehabilitation programs for chronic ankle instability patients. METHODS: This study was a randomized crossover design of 22 patients with chronic ankle instability. All subjects were divided into a vibrating group, a non-vibrating group, and a control group. The vibration and non-vibration groups performed the interventions, but the control group did not. For the measurement, the range of motion and proprioception of the ankle joint was measured using an electronic protractor (Electrogoniometer, BPM Pathway, UK). RESULTS: The vibration group showed significant differences in the dorsiflexion angle, dorsiflexion proprioception, and plantar flexion proprioception (p < .05). The non- vibration group showed significant differences in the dorsiflexion angle and dorsiflexion proprioceptive sensation (p < .05). The vibration group and the control group showed significant differences in dorsiflexion proprioception and plantar flexion proprioception (p < .05). CONCLUSION: The range of motion and proprioception of the ankle joint were improved in the group that received vibration stimulation after the intervention than before the intervention. Future research will be needed on patients with various diseases.

Vibration Analysis of a Cracked Beam with a Concentrated Mass Undergoing Rotational Motion (크랙과 집중질량을 갖는 회전 외팔보의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.354-359
    • /
    • 2008
  • Modal characteristics of a cracked beam with a concentrated mass undergoing rotational motion are investigated in this paper. Hybrid deformation variables are employed to derive the equations of motion of a rotating cantilever beam. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into a dimensionless form in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack and the size and location of a concentrated mass on the modal characteristics of the beam are investigated numerically.

  • PDF

Vibration Analysis of a Cracked Beam with a Concentrated Mass Undergoing Rotational Motion (크랙과 집중질량을 갖는 회전 외팔보의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.10-16
    • /
    • 2009
  • Modal characteristics of a cracked beam with a concentrated mass undergoing rotational motion are investigated in this paper. Hybrid deformation variables are employed to derive the equations of motion of a rotating cantilever beam. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into a dimensionless form in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack and the size and location of a concentrated mass on the modal characteristics of the beam are investigated numerically.

Study of Apparent Mass and Apparent Eccentric Mass to Vertical Whole-body Vibration by Using Strain-gage Type Six-axis Force Plate (6축 힘측정판을 이용한 수직방향 전신진동에 대한 겉보기질량 및 겉보기편심질량에 대한 고찰)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.897-904
    • /
    • 2011
  • When whole-body is exposed to vertical vibration, asymmetry shape of human body affects the response on the translational(fore-aft, lateral, vertical) and rotational(roll, pitch, yaw) motion. While the translational motion has been studied with various titles, it has been rare to study the rotational motion of human body exposed to vertical excitation because of lack of experimental equipment. This study was performed by using a 6-axis force plate installing strain gage type sensors for the rotational response. Sixteen male subjects were exposed to vertical vibration on rigid seat in order to investigate apparent mass of three translational motion and apparent eccentric mass of three rotational motion. Random signal was generated to make excitation vibration which was on an effective frequency range of 3~40 Hz, and magnitude of 0.224 m/$s^2$ r.m.s. The frequency range and magnitude used was selected for the vibration of passenger vehicle on idling condition. As the result, cross-axis apparent masses of fore-and-aft and lateral direction were not significant showing 20 % and 3 % of vertical apparent mass relatively. And apparent eccentric mass of pitch motion was dominant when compared to that of roll and yaw motion, which is reasoned by asymmetry direction of human body sitting on a seat.

Implementation of LabVIEW®-based Joint-Linear Motion Blending on a Lab-manufactured 6-Axis Articulated Robot (RS2) (LabVIEW® 기반 6축 수직 다관절 로봇(RS2)의 이종 모션 블랜딩 연구)

  • Lee, D.S.;Chung, W.J.;Jang, J.H.;Kim, M.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.318-323
    • /
    • 2013
  • For fast and accurate motion of 6-axis articulated robot, more noble motion control strategy is needed. In general, the movement strategy of industrial robots can be divided into two kinds, PTP (Point to Point) and CP (Continuous Path). Recently, industrial robots which should be co-worked with machine tools are increasingly needed for performing various jobs, as well as simple handling or welding. Therefore, in order to cope with high-speed handling of the cooperation of industrial robots with machine tools or other devices, CP should be implemented so as to reduce vibration and noise, as well as decreasing operation time. This paper will realize CP motion (especially joint-linear) blending in 3-dimensional space for a 6-axis articulated (lab-manufactured) robot (called as "RS2") by using LabVIEW$^{(R)}$ (6) programming, based on a parametric interpolation. Another small contribution of this paper is the proposal of motion blending simulation technique based on Recurdyn$^{(R)}$ V7 and Solidworks$^{(R)}$, in order to figure out whether the joint-linear blending motion can generate the stable motion of robot in the sense of velocity magnitude at the end-effector of robot or not. In order to evaluate the performance of joint-linear motion blending, simple PTP (i.e., linear-linear) is also physically implemented on RS2. The implementation results of joint-linear motion blending and PTP are compared in terms of vibration magnitude and travel time by using the vibration testing equipment of Medallion of Zonic$^{(R)}$. It can be confirmed verified that the vibration peak of joint-linear motion blending has been reduced to 1/10, compared to that of PTP.

A Study on Motion Acceleration-Deceleration Time to Suppress Residual Vibration of Robot (로봇 잔류 진동 저감을 위한 모션 가감속 시간 설계 연구)

  • Kang, Han Sol;Chung, Seong Youb;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this paper, we proposed a method to determine the acceleration/deceleration time of the motion for reducing the residual vibration caused by the resonance of the robot in the high-speed motion. The relationship between the acceleration/deceleration time and the residual vibration was discussed for the trapezoidal velocity profile by analyzing the time when the jerk happens. The natural frequency of the robot can be estimated in advance through the dynamics simulation. The simulation and experiment for both cases where the moving distance of the robot is long enough and the distance is short, are implemented in the 1-DOF linear robot. Simulation and experimental results show that when the acceleration/deceleration time is a multiple of the vibration period, the settling time and the amplitude of the residual vibration become less than when the time is not a multiple.

Vibration Analysis of an Axially Moving Membrane with In-Plane/out-of-Plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • 신창호;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.164-168
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption. the equation of out-of\ulcornerplane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

  • PDF

Vibration Analysis of an Axially Moving Membrane with In-plane/Out-of-plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • Shin Changho;Chung Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.910-918
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption, the equation of out-of-plane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

Directional Harmonic Wavelet Analysis (방향성 조화 웨이블렛 해석 기법)

  • 한윤식;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.267-272
    • /
    • 1998
  • A new signal processing technique, the directional harmonic wavelet map(dHWM), is presented to characterize the instantaneous planar motion of a measurement point in a structure from its transient complex-valued vibration signal. It is proven that the auto-dHWM essentially tracks the shape and directivity of the instantaneous planar motion, whereas the phase of the cross-dHWM indicates its inclination angle. Finally, the technique is successfully applied to an automobile engine for characterization of its transient motion during crank-on/idline/engine-off.

  • PDF

Chaotic Vibration of a Curved Oipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선파이프계의 혼돈운동 연구)

  • 박철희;홍성철;김태정
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.288-294
    • /
    • 1996
  • In this paper, Chaotic motions of a curved pipe conveying oscillatory flow are theoretically investigated. The nonlinear partial differential equation of motion is derived by Newton's method. The transformed nonlinear ordinary differential equation is a type of Hill's equation, which have the parametric and external excitation. Bifurcation curves of chaotic motion of the piping systems are obtained by applying Melnikov's method. Poincare maps numerically demonstrate theoretical results and show transverse homoclinic orbit of the chaotic motion.

  • PDF