• Title/Summary/Keyword: Vibration generators

Search Result 83, Processing Time 0.018 seconds

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

A Study on the Response Characteristics of 200MW Gas Turbine Governor System (200MW급 가스터빈 조속기 응답특성에 대한 연구)

  • Han, Young-Bok;Nam, Kang-Hyun;Kim, Sung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.625-632
    • /
    • 2022
  • Gas turbine generators in load-following operation in the domestic power system play a major role in maintaining the rated frequency, but often have poor frequency control. Therefore, after examining the control characteristics of the governor, which is a gas turbine speed control device, and analyzing the failure types, countermeasures were suggested for each case. In addition, it was confirmed through the governor response test that the gas turbine helps in frequency recovery depending on the speed of fuel control, but also acts as a factor impeding stable operation, such as rapid fluctuations in combustion chamber temperature and combustion vibration. Therefore, in order to maintain stable power quality, there was a need for thorough facility management as well as research on the governor control method in which the traditional PID control method and the machine learning algorithm, a core field of the 4th industry, were fused.

Characterization of a Micro Power Generator using a Fabricated Electroplated Coil (전기도금 방법으로 제작한 코일을 이용한 초소형 발전기의 특성분석)

  • Lee, Dong-Ho;Kim, Seong-Il;Kim, Young-Hwan;Kim, Yong-Tae;Park, Min-Chul;Lee, Chang-Woo;Baek, Chang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.9-12
    • /
    • 2006
  • We have designed and fabricated micro power generators by electroplating which is important in MEMS(micro electro mechanical system) technique. We have electroplated MEMS coils on the glass substrates and have chosen one of these coils for experiments. The thickness, width, and length of the coil are $7{\mu}m,\;20{\mu}m$, and 1.6 m, respectively. We have analyzed the structure of MEMS coil by SEM. We have made a vibrating system for reproducible results in measurement. With reciprocating a magnet on the surface of a fabricated winding coil, the micro power generator produce an alternating voltage. We have changed the vibrational frequency from 0.5 Hz to 8 Hz. The generated voltage was 106 mV at 3 Hz and 198 mV at 6 Hz. We aim at the micro power generator which can change vibration energy to useful electric energy.

  • PDF