• Title/Summary/Keyword: Vibration condition

Search Result 2,069, Processing Time 0.056 seconds

Optimum Working Condition of Al 2024 Alloy in Side Wall End Milling (Al 2024 합금의 측벽 엔드밀 가공 시 최적 가공조건)

  • Hong, Do-Kwan;Ahn, Chan-Woo;Park, Jin-Woo;Baek, Hwang-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • Working condition is one of the most important factors in precision working. In this study, we optimized the vibration acceleration level(VAL) of Al 2024 alloy to select optimum working condition of side wall end-milling using RSM(Response Surface Methodology). RSM was well adapted to make analytic model for minimizing vibration acceleration, created the objective function and saved a great deal of computational time. Therefore, it is expected that the proposed optimization procedure using RSM can be easily utilized to solve the optimization problem of working condition. The experimental results of the surface roughness and VAL showed the validity of the proposed working condition of side wall end-milling as it can be observed.

  • PDF

Preliminary study on the Condition Monitoring of Wind-turbine Gearbox (풍력발전기용 증속기 상태 모니터링에 관한 기초 연구)

  • Park, Young-Jun;Lee, Jae-Jeong;Lee, Geun-Ho;Nam, Yong-Yun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.343-346
    • /
    • 2008
  • To improve the reliability and extend the life for a wind-turbine gearbox, the gearbox needs to be monitored and analysed exactly. This study was conducted to analyze and detect the gearbox conditions when lubricating oil contaminated by wear particles was used. Characteristics of the gearbox failure by wear particles were monitored simultaneously by the on-line measurement sensor of vibration, oil condition and temperature. For the detail vibration analyses, frequency analysis(FFT) was performed. The results of the study were summarized as follows: Vibrational signal was found sensitive to abnormal changes of the gearbox conditions when lubricant was contaminated by wear particles. Also, using frequency analysis for the harmonics of gear mesh frequency(GMF), it is found that the failure of gearbox was caused by the damages of meshing gears. However, temperature and oil condition measuring signals were found not so effective to detect any gearbox failure by oil contamination.

  • PDF

The Study on the Optimal Working Condition for Vibration, Surface Roughness and Cutting Temperature in End-milling (엔드밀 가공시 진동, 표면거칠기, 절삭온도에 미치는 최적가공조건에 관한 연구)

  • Hong, Do-Kwan;Kim, Dong-Young;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1322-1329
    • /
    • 2004
  • End-milling has been used widely in industrial system because it is effective to a material manufacturing with various shapes. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum mechanical vibration of main spindle, surface roughness and cutting temperature have an effect on end-milling condition such as, cutting direction, revolution of spindle, feed rate and depth of cut, etc. Therefore, this study carried to decide the working condition for optimum mechanical vibration of main spindle, surface roughness and cutting temperature using design of experiments, ANOVA and characteristic function. From the results of experimentation, mechanical vibration has an effect on revolution of spindle, radial depth of cut, and axial depth of cut. The surface roughness has an effect on cutting direction, revolution of spindle and depth of cut. And then the optimum condition used design of experiments is upward cutting In cutting direction, 600 rpm in revolution of spindle, 240 mm/min in feed rate, 2 mm in axial depth of cut and 0.25 mm in radial depth of cut. By design of experiments and characteristic function, it is effectively represented shape characteristics of mechanical vibration, surface roughness and cutting temperature in end-milling.

A Study on the Redundant Vibration Analysis for the Development of Scratch Processing Technology (스크래치 가공기술 개발에 따른 잉여 진동 성분 분석에 관한 연구)

  • Jeon C.D.;Cha J.H.;Yun Sh.I.;Han S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1660-1663
    • /
    • 2005
  • Unwanted vibrations are inevitably induced in other directions when pure unidirectional vibration motion is desired for the vertical scratching mechanism. Pure vertical vibration motion of the scratching machine can be obtained by driving identical two motors with symmetrically positioned eccentric unbalance masses. The desired optimal condition for driving pure vertical vibration for the scratching machine is assumed to be the resonance condition in that direction. Imposing the flexibility of the scratching machine in the horizontal direction, we can find out the amount of horizontal vibration component while maintaining the resonance in vertical direction. The desired stiffness in horizontal direction which produces the minimum vibration in horizontal direction are defined which can be used as a guide line to design the supporting structure of the scratching machine.

  • PDF

Vibration-based Structural Health Monitoring of Caisson-type Breakwaters Damaged on Rubble Mound (사석마운드가 손상된 케이슨식 방파제의 진동기반 구조건전성 모니터링)

  • Lee, So-Young;Kim, Jeong-Tae;Kim, Heon-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.90-98
    • /
    • 2010
  • In this paper, vibration-based structural health monitoring methods that are suitable for caisson-type structures are examined by an experimental evaluation. To achieve the objective, four approaches are implemented. First, vibration-based structural health monitoring methods are selected to monitor the structural condition of caisson-type breakwaters. Second, a lab-scaled caisson structure is constructed to verify the selected monitoring methods. Third, the vibration characteristics are numerically analyzed using an FE model due to the change in the rubble mound condition. Finally, experimental vibration tests of the lab-scaled caisson structure are performed to monitor the vibration responses due to changes in rubble mound conditions and the performances of the selected methods are examined from the monitoring results.

Hydroelastic Effects in Vibration of Plate and Ship Hull Structures Contacted with Fluid

  • Lee, Jong-Soo;Song, Chang-Yong
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.76-88
    • /
    • 2011
  • The present study deals with the hydroelastic vibration analysis of structures in contact with fluid via coupled fluid-structure interaction (FSI) embedded with a finite element method (FEM) such that a structure displacement formulation is coupled with a fluid pressure-displacement formulation. For the preliminary study and validation of FEM based coupled FSI analysis, hydroelastic vibration characteristics of a rectangular plate in contact with fluid are first compared with the elastic vibration in terms of boundary condition and mode frequency. Numerical results from coupled FSI analysis have been shown to be rational and accurate, compared to energy method based theoretical solutions and experimental results. The effect of free surface on the vibration mode is numerically studied by changing the submerged depth of a rectangular plate. As a practical application, the hull structural vibration of 4,000 twenty-foot equivalent units (TEU) container ship is considered. Hydroelastic results of the ship hull structure are compared with those obtained from the elastic condition.

Snubber Analyzation and Vibration Measurement Estimation of Reciprocating Type Hydrogen Compressor (왕복동식 수소압축기의 완충기 해석 및 진동 측정 평가)

  • Jeong, J.H.;Lim, J.I.;Kim, H.J.;Choi, B.K.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.932-937
    • /
    • 2008
  • The pulsation of a reciprocating type hydrogen compressor is occurred from the mechanism and this pulsation makes much noise and vibration. To reduce this pulsation, snubber is usually installed on that. To maintain the efficiency in the reciprocating type hydrogen compressor, the pulsation and vibration should be reduced. so it is necessary to research about the characteristic of pulsation and vibration. Therefore in this paper, the vibration characteristic of the snubber is analyzed in the base of optimized modeling condition through the flowing analysis of existing snubber. The prototype of reciprocating type hydrogen compressor is analyzed with numerical analysis. And making sure the present condition of hydrogen compressor through measurement of vibration and noise, and then it is established that the vibration characteristic data base on numerical analysis which will be develope.

  • PDF

Optimization of 4WD Driveline for Improvement of Body Vibration in Driving Condition (4WD 차량의 주행 차체진동 개선을 위한 Driveline 최적화)

  • 이재운;민경재;정승균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.861-865
    • /
    • 2001
  • Generally the noise and vibration characteristics of 4WD vehicle is closely related to the characteristics of driveline such as bending mode, torsional mode, unbalance and nonuniformity of propeller shaft. In this paper the 4WD vehicle which has body vibration problem in high speed driving condition was tested. The sources of the body vibration and its transfer path are investigated by experimental approach. According to the experimental assessment, the body vibration is caused by the nonuniformity of joint of propeller shaft. And this paper presents a kinematic model of a vehicle driveline for the optimization of a driveline characteristics. Finally the optimized result of the drive line has been verified through the experiment.

  • PDF

Evaluation on the Effect of Whole Body Vibration on EEG Frequency-Fluctuation (인체진동이 뇌파변동리듬에 미치는 영향평가)

  • Min, Byung-Chan;Kim, Hyoung-Wook;Kim, Ji-Kwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.4
    • /
    • pp.71-77
    • /
    • 2007
  • In this study, reactions of central nervous systems working against different conditions of forced frequency and acceleration were measured and analyzed. The experiment are conducted with health men. The steady vibration conditions of forced frequency (0.315m/s2-1.0Hz, 0.315m/s2-10Hz and 10Hz-1.0m/s2) are used and the waves of EEG (Electroencephalogram) are measured. As a result, this paper shows that the ${\alpha}-wave$ of frontal lobe transfers from low to high frequency band under the vibration environment. Additionally, the average frequency of ${\alpha}-wave$ is higher under the vibration than under non-vibration environment. In the case of forced frequency of 1.0Hz-0.315m/s2, the feeling with the vibration are nearly same compared with the non-vibration condition. But in the case of 10Hz-1.0m/s2, uncomfortable feeling increased compared with the non-vibration condition. This study also shows the relationship between fluctuation slop and feeling. From this study, it is found that the effect of vibration on human depends on acceleration characteristics. Highly accelerating vibration is more harmful to human.

Magnetic-field Sensitivity of PMN-PZT/Ni Magnetoelectric Composite with Piezoelectric Single Crystal Mode Changes (PMN-PZT/Ni 자기-전기 복합체에서 단결정 압전 모드에 따른 자기장 감도 특성)

  • Park, Sojeong;Peddigari, Mahesh;Ryu, Jungho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-50
    • /
    • 2020
  • Magnetoelectric (ME) composites were designed using the PMN-PZT single crystal and Ni foils; the properties and magnetic-field sensitivities of ME composites with different piezoelectric vibration modes (i.e., 31, 32, and 36 modes that depend on the crystal orientation of the single crystal) were compared. In the off-resonance condition, the ME coupling properties of the ME composites with the 32 and 36 piezoelectric vibration modes were better than those of the ME composites with the 31 piezoelectric vibration mode. However, in the resonance condition, the ME coupling properties of the ME composites were almost similar, irrespective of the piezoelectric vibration mode. Additionally, in the off-resonance condition (at 1 kHz), the magnetic-field sensitivity of the ME composites with the 36 piezoelectric vibration mode was up to 2 nT and those of the ME composites with the 31 and 32 piezoelectric vibration modes were up to 5 nT. These magnetic-field sensitivities are similar to those offered by conventional high-sensitivity magnetic-field sensors; the potential of the proposed sensor to replace costly and bulky high-sensitivity magnetic field sensors is significant.