• Title/Summary/Keyword: Vibration ball

Search Result 262, Processing Time 0.026 seconds

A Study on the Feed Rate Optimization of a Ball Screw Feed Drive System for Minimum Vibrations (볼스크류 이송계의 진동 최소화를 위한 이송속도 최적화)

  • Choi, Young-Hyu;Hong, Jin-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.962-966
    • /
    • 2004
  • Ball screw feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modern machine tools require high speed and high precision and drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slide system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a ball screw, for its minimum vibrations. Firstly, a 6-degree-of-freedom lumped parameter model was proposed for the vibration analysis of a ball screw driven machine tool feed drive system. Next, a feed rate optimization of the feed slide was carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile having finite jerk. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

Modeling and Dynamic Analysis of a Front Loaded Washing Machine with Ball Type Automatic Balancer (볼 자동균형장치를 채용한 드럼세탁기의 모델링 및 동적 거동 해석)

  • 이준영;조성오;김태식;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.119-131
    • /
    • 1997
  • Ball type automatic balancer is used to reduce the vibration caused by unbalance of rotor. In this study, A analytic modeling of a front loaded washing machine with ball type automatic balancer has been suggested theoretically and ADAMS has been used to analyze the dynamic characteristics of automatic balancer. It is found from simulation and experimental results that the automatic balancer suppress the steady state vibration of the washing machine effectively. The test results match well with the simulation results of ADAMS, thereby the dynamic model of ADAMS can be used as virtual prototype to predict the vibration characteristics which could be changed by the modification of design variable and can reduce the design cycle sharply. To maximize the balancing effect of automatic balancer, the friction between balls and race and the deviation between geometric center and rotation center of drum need to be minimized and the optimum design for the stiffness of flange shaft and the angular acceleration of drum should be achieved.

  • PDF

Correlation between the linear impulse and ball spin rate (선 충격 량과 공의 회전 속도와의 상관관계)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.870-874
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

  • PDF

Correlation between the Linear Impulse and Ball Spin Rate (선 충격량과 공의 회전 속도와의 상관관계)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1127-1132
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

Design of High Speed Machine Tool Spindle Regarding Vibration Characteristics (진동특성을 고려한 공작기계 초고속 주축 설계)

  • 김종관;박보용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.99-103
    • /
    • 1991
  • 본 논고에서는 Radial 및 Axial 하중을 동시에 받을 수 있고, 예압에 의해 주축강성을 증대시킬수 있으며, Ball수의 증가로 부하능력을 향상시킨 초정 밀.초고속용 Angular ball bearing을 조합 사용하고, 고속회전에 지금까지 개 발된 ball bearing 윤활방법 중 가장 효과적인 간헐적인 oil 공급과 air 압력 으로, 계속 ball을 냉각, 윤활시켜주는 air oil 윤활법의 채용과, 국내 공작기 계 제조회사들이 주로 사용하는 일본 FAMUC AC Spindle motor(FAMUC-H type : 8000-15000rpm)를 사용해서 초고속 주축의 최적 설계조건을 제시하기 위한 기초연구 단계로 MT40-12000rpm 급의 Machining center용 Cartridge type의 Spindle unit개발을 통해서 주축설계에 따른 문제점과 연구용 주축제작의 생산 기술적 문제점 및 진동특성을 검토 하고자 한다.

  • PDF

The Comparison Between Fault Detection Methods about Early Faults in a Ball Bearing (볼 베어링의 조기 결함 검출 방법들의 비교)

  • Park, Choon-Su;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.200-203
    • /
    • 2005
  • Ball bearings not only sustain the system, but permit the rotational component to rotate. Excessive radial or axial load and many other reasons can cause faults to be created and grown rapidly in each component. The grown faults make noise and vibration, which can make the system unstable. Therefore, it is important to detect faults as early as possible. For this reason, there have been many researches on fault detection method of early faults in a ball bearing. The fault defection methods can be categorized to several groups by signal processing methods. Not all the methods are efficient for finding early faults. We select representative methods known as efficient for detecting early faults and compare the results for inspecting which method is effective.

  • PDF

Fault Diagnosis of Ball Bearing using Correlation Dimension (상관차원에 의한 볼베어링 고장진단)

  • 김진수;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.979-984
    • /
    • 2004
  • The ball bearing having faults generally shows, nonlinear vibration characteristics. For the effective method of fault diagnosis on bail bearing, non-linear diagnostic methods can be used. In this paper, the correlation dimension analysis based on nonlinear timeseries was applied to diagnose the faults of ball bearing. The correlation dimension analysis shows some Intrinsic information of underlying dynamical systems, and clear the classification of the fault of ball bearing.

  • PDF

Evaluations on isolation method of floor impact sounds by real impact source (실충격원을 고려한 바닥충격음 저감방안의 평가)

  • Yoo, Seung-Yup;Lee, Pyung-Jik;Jeong, Young;Jeon, Jin-Yong;Ryu, Jong-Kwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.366-370
    • /
    • 2006
  • In this study, characteristics of impact force and impact sound of impact source such as bang machine, impact ball, and children's jumping were review. Results of review showed that impact ball has most similar characteristic to real impact sources in terms of objective properties such as impact force and impact sound. The effects of various isolator on floor impact sound were also investigated in apartment building and test facilities building using bang machine an impact ball. From the field measurement, it was found that the difference in reduction sound level between bang machine and impact ball was relatively large and the reduction sound level by impact ball was much larger than bang machine.

  • PDF

NRRO Analysis of a HDD Spindle Ball Bearing using Measured Geometric Imperfection (실측형상오차를 이용한 HDD 스핀들용 볼베어링의 NRRO 해석)

  • Kim, Young-Cheol;Park, Sang-Kyu;Yoon, Ki-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.341.1-341
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(the non-repeatable run-out) for a ball bearing with geometric imperfection. The 3DOF dynamic analysis of a ball bearing using the Runge-Kutta method is performed to calculate the displacement of shaft center. Frequency and magnitude characteristics of radial and axial vibrations are investigated. The ball form errors of the ball, the inner race, and the outer race in a HDD spindle ball bearing are precisely measured. (omitted)

  • PDF

Fatigue Life Estimation of Solid-state Drive due to the Effect of Dummy Solder Ball under Forced Vibration (SSD 강제진동 시 더미 솔더 볼 효과에 의한 피로수명 예측)

  • Lee, Juyub;Jang, Gunhee;Jang, Jinwoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.176-183
    • /
    • 2015
  • This research proposes a method to estimate the fatigue life of SSD(solid-state drive) due to the effect of dummy solder ball under forced vibration. A finite element model of the SSD was developed to simulate the forced vibration and a modal testing was performed to verify the developed finite element model. Fatigue life of the SSD under vibration was experimentally determined according to JEDEC standard in which the SSD was excited by a sinusoidal sweep vibration within the narrow frequency band around the first natural frequency until the SSD fails. Basquin's equation was introduced to estimate the fatigue life of the SSD due to the effect of dummy solder balls. It shows that the dummy solder balls are effective elements of the SSD to increase the fatigue life of an SSD by increasing 700 times of the fatigue life of the given SSD.