• Title/Summary/Keyword: Vibration and noise control

Search Result 1,837, Processing Time 0.036 seconds

Numerical study on impact noise control of PC slab coupled with viscoelastic material (점탄성재료가 결합된 PC슬래브의 바닥충격음 제어에 관한 수치해석 연구)

  • Hwang, Jae-Seung;Hong, Gun-Ho;Park, Hong-Geun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1160-1166
    • /
    • 2007
  • In this study, a new slab system that adjoint precast slabs are connected each other by viscoelastic material is proposed and numerical analysis is performed to evaluate the effect of the slab system on the vibration and noise control. Substructuring is introduced to develope the equation of motion of the slab system and the optimal properties of viscoelastic material are calculated. For the performance evaluation of the new slab system, the sound power and acceleration of the slab are compared with those of two way slab and the slab which the viscoelastic material is not connected. Numerical results show that the sound power of the new slab system can be reduced an amount of 6dB.

  • PDF

Active Control of Transmitted Noise through Opening of Enclosures (인클러져 개구부 투과소음 능동제어)

  • Lee, Hanwool;Hong, Chinsuk;Jung, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.733-738
    • /
    • 2012
  • This paper presents active noise control for the reduction of transmission noise passing through opening of enclosures. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, we modeled and analyzed the noise characteristics passing through the openings of the enclosure generated by the operation of the machinery based on the finite element method. We then implemented a feedforward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. A good control performances were achieved using a minimum number of microphones arranged a optimal placement.

  • PDF

A Study on Characteristics of Noise and Vibration for KTX (한국형 고속철도의 소음/진동 특성에 관한 연구)

  • 김재철;구동회;문경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.829-835
    • /
    • 2001
  • The sources of wayside noise for the high speed train are the aerodynamic noise, rolling noise and power unit noise. One of the best ways to control the wayside noise is to analysis the noise level. In this paper, we measure the wayside noise and the vibration of the rail/sleeper for Korean Train Express (KTX) and compare with the results for the conventional train. The measurement results for KTX show that the characteristics of the noise and vibration are different from the conventional train and the rolling noise and power unit noise are the major sources.

  • PDF

Development on a Vibration Reducing Element for the Large Transformers (대형 변압기 방진장치개발)

  • Lee, Jun-Shin;Lee, Wook-Ryun;Son, Seok-Man;Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.259-262
    • /
    • 2005
  • The large transformers used in the electric power company become targets of public complaints because of those characteristics generating high-level noise. Reducing vibration level is the basis of noise control for the large transformers. For this reason, a vibrating reducing element is developed for the large transformers with a sub-element enduring seismic movement. Large attenuation of vibration is achieved by applying the element to the large transformers in a substation.

  • PDF

Vibration Control of a Structure Using the Toggle-Rotational Inertia Damper (토글-회전관성댐퍼를 이용한 구조물의 진동제어)

  • Hwang, Jae-Seung;Choi, Rak-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.586-590
    • /
    • 2006
  • This paper presents a new vibration control device by which the mass and damping of a structure is increased equivalently. The vibration control system, named toggle-rotational inertia-viscous damper, can be utilized effectively in applications of small structural drift. Numerical analysis shows that because the relative drift of a structure can be effectively amplified by the toggle system, the device has a great performance in the vibration control without the increase of the damper capacity and size. It is also observed that vibration control effects is caused by the increase of equivalent mass and damping due to the rotational inertia and damping of the device.

  • PDF

A Multichannel System for Virtual 3-D Sound Rendering (입체음장재현을 위한 멀티채널시스템)

  • Lee Chanjoo;Park Youngjin;Oh Si-Hwan;Kim Yoonsun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.223-226
    • /
    • 2000
  • Currently a multichannel system for virtual 3-D sound rendering is under development. Robust sound image formation and smooth real time interactivity are main design Points. The system utilizes VBAP algorithm as virtual sound image positioning. Overall system settings can be easily configured. We developed software, RIMA. as a driving Program of the system. At this stage, it is possible to position virtual sound images at arbitrary positions in three-dimensional space. The characteristics of the system are discussed. The system has been applied to the KAIST Bicycle Simulator to generate the virtual sound field.

  • PDF

A Design of Electromagnet Actuator for Active Vibration Control (능동 진동제어용 전자기 액츄에이터 설계)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.522-524
    • /
    • 2005
  • In this paper, we address an actuator system, which suppresses the micro-vibration engaged by environment. The actuator system consists of two modules with a permanent and an electromagnet. In vertical mode, one module is upper the other is lower. For optimal control of alternating vibration, the rate of the attraction force and the repulsion force is exactly one. Generally, the repulsive force is smaller than the attractive force. For linear control of engaged vibration, the ratio of repulsive force and attractive force is designed to equal. The actuator system will be applied to an active vibration control system for precise vibration suppression. In this paper, the actuator structure and its important sizes are calculated by RMS and FEM analysis.

  • PDF