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1. Introduction 

A tuned-mass damper (TMD), or dynamic 

vibration absorber (DVA), is a very well-known 

vibration control device, which consists of a 

moving mass attached to the main structure 

through springs and dampers. 

Though there are some studies on pendulum type 

of DVA, the primary structure is often modeled as 

a spring-mass system. However, other models 

also have high interest in research and 

engineering application. In particular, the 

pendulum type systems occurring as a model of 

solid body with a fixed fulcrum point can play an 

important role in many fields such as machinery, 

transportation and civil engineering. The 

pendulum has been used to illustrate some types 

of structures such as ropeway gondola, crane or 

floating structures (ships, tension leg platform). 

As shown by some previous studies [1-4], using 

DVA is a mean for reducing swing of pendulum 

structures. There are two main types of DVA. 

The first one moving in the circumference 

direction (left and right) (as shown in Fig.1a) was 

investigated theoretically by Matsuhisa [1]. 

 

 
Fig. 1: Absorbers in a planar pendulum structure: 

(a) DVA moving in circumference direction, (b) 

DVA moving in radial direction 

 

Since the first installation of the dynamic 

absorber on the ropeway chair lifts in 1995, 

dynamic absorbers have been installed on about 

20 ropeways in Japan [4]. The more general 

study on DVA installed in the inverted pendulum 

type systems were also presented by Anh et al 

[5]. Matsuhisa et al [6] also propose the second 

type of DVA moving in the radial direction (up and 

down) (as shown in Fig.1b). This type of absorber 

produces Coriolis force as the damping force.  

In many practical situations, however, the planar 

pendulum should be replaced by spherical 

pendulum in order to model the structures more 

precisely. In comparison between two types of 

DVA, it is easy to see that the second type (Fig. 

1b) has the bidirectional nature while the first 

type can only reduce vibration in a plane. 

Therefore, in this paper, we study the vibration 

control problem of the spherical pendulum by 

using the DVA moving in the radial direction. The 

structure of paper is as follows. At first, the 

nonlinear motion equation is written in non-

dimensional form. Then the second-order 

approximation is used to explore some important 

characteristics of the system. The optimal 

DVA’ s parameters are chosen to minimize the 

system total potential energy. We specify a 

special vibration type, in which the DVA has little 

effect. However, when the spherical pendulum is 

subjected to random external excitation, this 

special vibration type does not occur and in most 

cases, the DVA still has good effect. The Monte 

Carlo simulations are used to verify that 

conclusion. 

 

2. Equations of motion and some initial 
remarks 

As shown in Fig. 2, the spherical pendulum has a 

concentrated mass m1, l1 is the length between 
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the gravity center and the fulcrum (center of 

swing). 

 

 
Fig. 2: Geometrical description of the spherical 

pendulum: (a) geometrical parameters, (b) 

coordinate system and swing angles 

 

The rotational angle (measured in the xz plane) is 

denoted by , while  is the angle of pendulum 

cable measured from xz plane, v is the DVA’ s 

displacement in radial direction measured from 

the static position, l is the distance between the 

fulcrum and the DVA in the static condition, g is 

the acceleration of gravity, m2, k and c are mass, 

spring constant and damping coefficient of the 

DVA, respectively. The structural damping is 

denoted by c1 and is assumed to be identical in all 

directions. The spherical pendulum system 

combining with DVA has three degrees of 

freedom including ,  and v. By considering the 

coordinate system as shown in Fig. 2b, the 

positions of the structure (x1, y1, z1) and the DVA 

(x2, y2, z2) are obtained easily: 
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The kinetic energy T, the potential energy V and 

the energy dissipation function F are: 
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Let assume that the spherical pendulum is 

subjected to external forces Px(t) and Py(t) in x-

direction and y-direction, respectively. The 

Lagrange motion equations become: 
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After some manipulations, the following nonlinear 

equations are obtained: 
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The following non-dimensional parameters are 

introduced: 
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In which,  is the mass ratio, s and s 

respectively are natural frequency and damping 

ratio of the main structure,  is the natural 

frequency ratio,  is the absorber’ s damping 

ratio,  is the location parameter specifies the 

position of the dynamic absorber, u is the non-

dimensional form of absorber’ s displacement,  
is the non-dimensional time with time scale s

-1, 

px and py are the non-dimensional forms of 

external excitations, respectively. The motion 
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equations (7) are simplified and rearranged as 

following non-dimensional form: 
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In the below sections, we consider the 

minimization of potential energy. Therefore, the 

potential energy V described in (4) is rewritten in 

the following form: 
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The non-dimensional nonlinear motion equations 

(9) will be used in numerical calculations. Before 

moving further, let us discuss some important 

characteristics of the motion equations. In the 

first two equations of (9), the Coriolis forces 

 22 cosu u      and  2 u u     act as the 

nonlinear damping forces to reduce the pendulum 

vibration angles  and . In order to clearly 

observe the interaction between the absorber and 

the spherical pendulum, let consider the harmonic 

vibrations of pendulum angles  and  with natural 

frequency as follows: 

 

 cosm   ,  cosm      (11) 

 
in which  is the phase shift between two angles. 

Moreover, let assume that the vibration angles 

are small enough to eliminate the third order and 

higher order terms, the third equation of (9) 

reduces to: 

 

 
2 2

2 2 22
2

u u u
     

        

or 

        

2

2 2
2 2

2

2 1
cos2 cos 2 2 1 2

4 4
m m

m m

u u u 

 
     

  


   

 
 

  (12) 
 

Some important remarks can be drawn from (12): 

- In order to amplify the DVA’ s displacement u, 

the natural frequency ratio  should be chosen to 

be near 2 to produce resonance, and then the 

damping ratio  should be chosen an optimal value 

to produce maximum energy dissipation. 

- The DVA’ s displacement is proportional to the 

location parameter . Therefore the larger 

location parameter  often gives the better effect. 

- The DVA's displacement is proportional to the 

square of pendulum vibration angles. Therefore, 

this type of DVA has poor effect for small 

vibration. 

- Let consider the special case when the 

following condition holds: 
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When the condition (14) holds, the dynamic 

excitation term in equation (12) vanishes, the 

DVA can not be excited and therefore the DVA 

has no effect at all. In order to explain this 

phenomenon more clearly, the conditions (14) 

are substituted into (11), then into (1). By 

assuming the small vibration angles, we obtain: 

 

 2 2 2 2
1 1 1 mx y l    (15) 

 
The equation (15) simply expresses the circular 

motion in the horizontal plane. This motion can 

not excite the motion in radial direction. It is also 

noted that the planar pendulum does not have this 

type of motion. 

3. Optimal parameters of dynamic vibration 
absorber  

In fact, the DVA is specified by four parameters 

including: mass ratio , location parameter , 
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natural frequency ratio  and damping ratio . The 

mass ratio  and the location parameter  should 

be chosen to be as large as possible. The natural 

frequency ratio , as shown in the previous 

section, should be tuned close to 2. In this section, 

the numerical calculation is used to investigate 

the effects of parameters on the system 

responses. For simplicity, only planar free 

vibration with initial angle is considered. That 

means the following assumptions are applied to 

motion equations (9) 

 

           00 ; 0 0 0 0 0 0x yu u p p               

  (16) 

 
However, because of the homogenous nature of 

the spherical pendulum, the optimal parameters of 

DVA can also work in the three-dimensional case, 

which is shown in the next section. 

The nonlinear equations (9) with the assumptions 

(16) are numerically solved. By using the 

potential energy V taken from (10), the following 

non-dimensional performance index is considered 

to be minimized: 
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in which, Tf is the total time of simulation. The 

total potential energy described in (17) is 

preferred to the pendulum angle itself, because 

the performance index J can take into account the 

DVA's displacement. When =0, we obtain the 

performance index of pendulum structure without 

DVA. The total time of simulation Tf is taken of 

200s, the structural damping ratio s is taken of 

0.5%. The DVA’ s parameters , , ,  and the 

initial angle 0 are changed to study their effects. 

 

The plots of performance index versus the natural 

frequency ratio  for various parameters are 

shown in Figs. 3-6. In Figs. 3-6, J and Ju denote 

the performance indexes with and without DVA, 

respectively. 
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Fig. 3: J as function of ;  

(I), (II), (III): =1%, 5% and 8%, respectively;  

other parameters: =0.05, =1,0=20o 
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Fig. 4: J as function of ; 

(I), (II), (III): 0=15o, 20o and 25o, respectively; 

other parameters: =0.05, =1, =2% 
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Fig. 5: J as function of ; 

(I), (II), (III): =1%, 4% and 6%, respectively; 

other parameters: 0=20o, =1, =2% 
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Fig. 6 : J as function of ; 

(I), (II), (III): =0.5, 1 and 1.5, respectively; 

other parameters: 0=20o, =3%, =2% 

 

Some remarks can be drawn from the plots: 

- In most cases, the optimal natural frequency 

ratio should be near to 2. However, in Fig. 6, 

when  is quite large, the optimal natural 

frequency ratio is slightly smaller than 2. This can 

be explained by observing the motion equations 

(9). When  increases, the equivalent mass 

 21 u    increases faster than equivalent 
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stiffness  1 u   , then the natural frequency 

of pendulum attaching with DVA decreases, leads 

to the decrease of optimal natural frequency ratio. 

- As seen from Figs. 4-6, when location 

parameter  or the mass ratio  or the initial angle 

0 increases, the effectiveness of DVA increases. 

 

The plots of performance index versus the 

DVA’ s damping ratio  for various parameters 

are shown in Figs. 7-10. 
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Fig. 7: J as function of ; 

(I), (II), (III): =1.95, 2 and 2.05, respectively; 

other parameters: 0=20o, =5%, =1, 
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Fig. 8: J as function of ; 

(I), (II), (III): 0=15o, 20o and 25o, respectively; 

other parameters: =2, =5%, =1 

 

0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.02 0.04 0.06 0.08 0.1



J/
J u

(I) (II) (III)

 
Fig. 9: J as function of ; 

(I), (II), (III): =0.5, 1 and 1.5, respectively; 

other parameters: =2, =3%, 0=20o 
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Fig. 10: J as function of ; 

(I), (II), (III): =1%, 4% and 6%, respectively; 

other parameters: =2, =1, 0=20o 

Some remarks can be drawn: 

- The optimal damping ratio is about 2%. When  
or  or 0 decreases, the optimal damping ratio 

also slightly decreases. 

- The shapes of curves are quite flat in the right 

side of optimal damping ratio. Therefore, a 

damping ratio larger than the optimal value will 

not reduce much the effectiveness. 

4. Random vibration in 3D space 

In practical situations, the random effect of 

vibration phase often breaks the requirement of 

90o phase lag in the condition (14). Therefore, the 

DVA has good effect in random vibration case. 

Let consider the random vibration of the spherical 

pendulum under white noise excitations. The 

parameters are chosen as: total simulation time 

Tf=200s, pendulum damping ratio s=0.5%, mass 

ratio =3%, location parameter =1.5, natural 

frequency ratio of DVA =2, damping ratio of 

DVA =3%, the initial values are taken to be zero. 

The excitations px and py in equation (9) are taken 

as the white noises with the same intensity, which 

is denoted by S0. This leads to the vibration 

amplitudes in two directions are nearly the same. 

However, the DVA still has good effect because 

of the random nature of vibration phase. The 

Monte Carlo simulation is used to obtain the mean 

values of quantities. The total number of sample 

is 1000. The ratios between performance indexes 

in cases of system without and with DVA are 

tabulated in Table 2 

 

Table 2: Performance of DVA versus the white 

noise excitation intensity 

S0 0.10 0.30 0.50 0.70 0.90

J/Ju 0.93 0.87 0.83 0.80 0.78

S0 1.10 0.30 1.50 1.70 1.90

J/Ju 0.76 0.74 0.73 0.72 0.71

 
We denote the non-dimensional total 

displacement as 

 

      2 2 2 2 2
1 1 1 cos sin sind t x t y t l        (18) 

 
The mean values of non-dimensional total 

pendulum displacement (18) and non-dimensional 

DVA’ s displacement are plotted in Figs. 11-14, 
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in which <•> denotes the mean value over the 

total number of samples in Monte Carlo simulation.  

The results in Table 2 show that the DVA 

performance improves with the increase of 

excitation intensity. From Figs. 11-14, we see 

that when the excitation intensity increases, the 

DVA displacement also increases resulting in the 

more energy dissipation to reduce pendulum 

vibration. 
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Fig. 11a-d: Time histories of mean values of 

displacement of pendulum and DVA in several 

case of non-dimensional white noise intensity 

5. Conclusions 

The DVA moving in radial direction has been 

considered to reduce vibration of the spherical 

pendulum structure. The advantage of this type of 

DVA is the capability of bidirectional vibration 

control by only one translation. The DVA has 

good performance in case of large vibration. 

Optimal parameters for the DVA are numerically 

calculated in order to reduce the integration of 

system's potential energy. In a special case, the 

spherical pendulum moves circularly in a 

horizontal plane, the DVA has quite little effect. 

However, in random vibrations, the random nature 

of vibration phase excludes the horizontal circular 

motion and then ensures the DVA effectiveness.  
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