• Title/Summary/Keyword: Vibration analysis

Search Result 9,950, Processing Time 0.037 seconds

Comparison of various methods to obtain structural vibration for vibro-acoustic noise (구조 방사 소음의 해석을 위한 구조물의 진동 획득 방법의 비교)

  • Wang Se-Myung;Shin Min-Cheol;Koo Kun-Mo;Kim Dae-Sung;Bae Won-Ki;Kyong Yong-Soo;Kim Jung-Seon;Kook Jung-Hwan;Thuy Tran ho Vihn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.607-611
    • /
    • 2006
  • There are several methods to obtain structural vibration for analysis of vibro-acoustic noise. First of all, vibration data can be obtained through the structural analysis using finite element method. Although this method has no need to experiment, the analysis result is unreliable when the structure and the vibration source is complex to model exactly. The second method is to measure vibration using a number of sensors. The analyzed vibro-acoustic noise with directly measured data is setting morereliable when the number of data acquisition points is getting larger. However, it requires large amount of time and effort to measure all vibration data on every node especially when the size of vibrating structure is large. The Modal Expansion Method(MEM), which uses mode information and measurement data, has been introduced to compensate their limits. With a relatively small number of measurement data, the reliable structural vibration for vibro-acoustic noise can be obtained using this semi-analysis method. Although MEM gives reliable result, it is restricted by the number of modes and measurement points. In this paper, structural analysis, direct vibration measurement method and MEM are compared using the simple aluminum box model. Furthermore, the washing machine case is also provided as a comparative example. The Laser Doppler Vibrometer(LDV) was used instead of contact type accelerometer to get vibration data.

  • PDF

Analysis of Structural Stability and Optical Performance for Optical Equipment During In-flight Vibration (항공기 진동에 대한 광학 탑재 장비 구조 안정성 및 광학 성능 분석)

  • Jo, Mun Shin;Kim, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.897-904
    • /
    • 2017
  • Optical equipment consists of various components, and a detector is mounted and operated on aircraft, tanks, and warships for target detection and classification. The structural stability and optical performance of aeronautical optical equipment operated at several kilometers of altitude are degraded owing to vibration generated in the aircraft. It is necessary to verify the structural stability and optical performance requirements of the equipment in vibration environment conditions during the design phase. In this study, vibration environment conditions were analyzed using a test standard and the measurements of the vibration generated in aircraft. The conditions were classified as endurance and operating vibration conditions for structural stability and optical performance verification, respectively. The structural stability was verified according to natural frequency analysis, response analysis for the endurance vibration condition, and static analysis. The optical performance was verified by applying the vibration response analysis results to the optical design/analysis program.

Back Analysis for Estimating Tension Force on Hanger Cables (역해석기법을 이용한 현수교 행어케이블 장력 추정)

  • Kim, Nam-Sik;Bin, Jung-Min;Chang, Sung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.894-901
    • /
    • 2006
  • In general, the tension fores of hanger cable in suspension bridges play an important role in evaluating the bridge state. The vibration method, as a conventional one, has been widely applied to estimate the tension fores by using the measured frequencies on hanger cables. However, the vibration method is not applicable to short hanger cables because the frequency of short cables is severely sensitive to the flexural rigidity. Thus, in this study, the tension forces of short hanger cables, of which the length is shorter than 10meters, were estimated through back analysis of the cable frequencies measured from Gwang-An suspension bridge in Korea. Direct approach to rock analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method is able to search the optimal tension forces without regard to the initial ones and has a rapid convergence rate. To verify the feasibility of back analysis, the results from back analysis and vibration method are compared with the design tension forces. From the comparison, it can be inferred that back analysis results are more reasonable agreement with the design tension forces of short hanger cable. Therefore, it is concluded that back analysis applied in this study is an appropriate tool for estimating tension forces of short hanger cables.

  • PDF

Application of Finite Element Method to Floor Impact Vibration Analysis in the Apartment Buildings (공동주택의 바닥 충격 진동 해석을 위한 유한요소법 응용)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.387-390
    • /
    • 2005
  • Finite element method was applied to the vibration analysis of concrete slab system in apartment building. To save the time and cost the 2 dimensional finite element model was proposed. At first, experimental results show that sound peak components to influence the overall level and the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab. Second, there is linear relationship between the impact sound pressure level and vibration acceleration level. Third, 2 dimensional finite element model was enough to analyze the vibration analysis of floor structure system.

  • PDF

A Study on Vibration Reduction of an Industrial Fan (산업용 송풍기의 진동저감에 관한 연구)

  • 송승훈;김회룡;정진태
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.457-464
    • /
    • 2000
  • Vibrations of a fan are often generated by mechanical unbalance magnetic force and air flow. These vibrations depend on the design of a fan the machining accuracy of each element and assembled conditions. An experimental study is carried out to reduce the vibration and noise of an industrial fan in this paper. In order to identify the vibration sources of a fan the signal analysis and system analysis are performed, It is shown that the industrial fan studied in this paper has a natural frequency at 144 Hz and resonance occurs when the running speed of the fan is 1750 rpm. The results may be helpful to design a fan with low vibration and noise.

  • PDF

Structural Analysis and Vibration Characteristics of Scaffolding Structures (비계 구조물의 구조해석 및 진동 특성)

  • Ryu, B.J.;Lee, C.R.;Kim, H.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.491-498
    • /
    • 2009
  • This paper deals with structural analysis and vibration characteristics of scaffolding structures with a hoist according to payloads. In order to analyze the vibrational and structural characteristics for 20-step scaffolding structure, structural and vibrational characteristics for 2-step scaffolding structure were compared with some experimental results. The numerical results for natural frequencies of scaffolding structures have a good agreement with experimental ones. Through the numerical analysis, firstly, it is shown that the maximum stress of scaffolding structures is lower than von-mises yield criteria when four persons with total weight of 280 kgf are working at the top of the scaffolding structures. Secondly, vibration characteristics including natural frequencies and modes for scaffolding structures are shown in case of various kinds of moving masses.

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.57-62
    • /
    • 2007
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

  • PDF

Vibration Analysis of a Rotating Blade Considering Pre-twist Angle, Cross Section Taper and a Concentrated Mass (초기 비틀림 각과 단면 테이퍼 그리고 집중질량을 갖는 회전하는 블레이드의 진동해석)

  • Kim, Hyung Yung;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.338-346
    • /
    • 2013
  • Equations of motion of a rotating blade considering pre-twist angle, cross section taper and a concentrated mass are derived using the hybrid deformation variable modeling method. For the modeling of a concentrated mass which is located at an arbitrary position of the blade, a Dirac delta function is employed for the mass density function. The final equations for the vibration analysis are transformed into a dimensionless form using several dimensionless parameters. The effects of the dimensionless parameters on the vibration characteristics of the rotating blade are investigated through numerical analysis.

Structural Dynamic Modification of Fixture by Antiresonance Frequency Analysis in Environmental Vibration Test Control (환경진동시험 제어에서 반공진 진동수해석에 의한 치구의 구조변경설계)

  • 김준엽;정의봉
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.555-563
    • /
    • 1995
  • This paper proposes the method of antiresonance frequency analysis of multi-input multi-output system. The structural dynamic modification techniques by antiresonance frequency analysis are also applied to reduce the undertest at specimen attachment points on the fixture in environmental vibration test, which is resulted from the inconsistency of antiresonance frequencies at any specified points. Several computer simulations show that the proposed method can remove the undertest problem which is not removed in conventional vibration test control. And the effectiveness of the method is verified with the impact hammer excitation of aluminium fixture model.

  • PDF