• 제목/요약/키워드: Vibration acceleration

Search Result 1,275, Processing Time 0.031 seconds

Evaluation of Vibration Control Performance of Outrigger Damper System for Tall Buildings Subjected to Seismic Load (아웃리거 댐퍼시스템의 고층건물 지진응답제어 성능 평가)

  • Yoon, Sung-Wook;Lee, Lyeong-Kyeong;Kim, Kwang-Il;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. Use the El Centro seismic(1940, NS) analysis was performed. Analysis results, on the top floor displacement response to the earthquake response, did not have a big effect. However, acceleration response control effect was found to be excellent. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.

A Study on the Seismic Response of Arch Structures Using Artificial Earthquake Ground Motions (아치구조물의 모의지진파 입력에 따른 지진응답특성에 관한 연구)

  • Jung, Chan-Woo;Park, Sung-Moo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.6
    • /
    • pp.59-66
    • /
    • 2008
  • Seismic safety is more important for large spatial structure such as theaters, stadiums, gymnasiums since these structure are public goods. It is, however, difficult to understand behavior taking place when large spatial structure which has variety of structural system and shape receives seismic load. On this study, the natural vibration mode of arch structure which is main structural element of the large spatial structure, is checked. And then, when the artificial earthquake ground motion is applied to arch structure, it is more affective by long period component than magnitude of design acceleration spectrum.

  • PDF

Long-Term Monitoring and Analysis of a Curved Concrete Box-Girder Bridge

  • Lee, Sung-Chil;Feng, Maria Q.;Hong, Seok-Hee;Chung, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • Curved bridges are important components of a highway transportation network for connecting local roads and highways, but very few data have been collected in terms of their field performance. This paper presents two-years monitoring and system identification results of a curved concrete box-girder bridge, the West St. On-Ramp, under ambient traffic excitations. The authors permanently installed accelerometers on the bridge from the beginning of the bridge life. From the ambient vibration data sets collected over the two years, the element stiffness correction factors for the columns, the girder, and boundary springs were identified using the back-propagation neural network. The results showed that the element stiffness values were nearly 10% different from the initial design values. It was also observed that the traffic conditions heavily influence the dynamic characteristics of this curved bridge. Furthermore, a probability distribution model of the element stiffness was established for long-term monitoring and analysis of the bridge stiffness change.

Measurement and Control of Ground Vibrations due to Precast Concrete Pile-driving by Diesel Hammer (디젤해머에 의한 콘크리트말뚝 항타시(抗打時) 발생(發生)되는 지반진동(地盤振動)의 측정(測定) 및 영향평가(影響評價))

  • Park, Yean Soo;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • This Paper measures and analyzes ground vibrations induced during precast concrete pile-driving using diesel hammer at radii varying from 9m to 30m to evaluate effects of such vibrations associated with deep foundation piling operations near the residential of commercial areas. From this study, characteristics for attenuation and frequency of the vibrations casued by pile-driving are established and the empirical equation for predicting peak velocity and acceleration levels are obtained. This equation can be used to predict the peak vibration levels and select the appropriate hammers for future projects where similar soil conditions to this test site are encountered.

  • PDF

Study on the Structural Analysis of Small Size Industrial High Speed Parallel Robot (산업용 소형 고속병렬로봇의 구조해석에 관한 연구)

  • Park, Chanhun;Do, Hyun Min;Choi, Taeyong;Kim, ByungIn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.923-930
    • /
    • 2013
  • These days, the interests on the high speed handling robots are increasing because it is important to get down the unit cost of production to get the price competitiveness. The parallel kinematic mechanism is more suitable to implement the high speed robot system as well known. The moving parts of the high speed parallel robot have to be designed for light weight. But the vibration motion is induced by the light weight links because they drive in high acceleration and deceleration. In this reason, the structural analysis of the high speed parallel kinematic robot is very important in the design process. In this paper, the study on the structural analysis of a high speed parallel robot has been done and the research results will be introduced.

The Analyses of Dynamic Characteristics and Flight Test Results of Airship Throughout the Flight Test (비행 시험을 통한 비행선의 운동 특성 해석 및 시험 결과 분석)

  • Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.214-221
    • /
    • 2005
  • For decades, airships have being developed in Europe (especially German) and America. Airships are planning to be used for advertisements and airliners as well. In Korea, KARI (Korea Aerospace Research Institute) is developing stratospheric communication airship and the similar research is carried out in Japan. Among them, Zeppelin of German has the cutting-edge airship technology with Zeppelin NT. In this paper, the flight performance and stability were evaluated by comparing mathematical theory and the real test. The stability was examined through dynamic modeling and assured by designing controllers at each flight mode. Elevator angle, rudder angle, magnitude of thrust and tilting angle of thrust vector were used as control inputs. Moreover, after measuring the airship velocity, flight direction, magnitude and direction of the wind, attitude angles and trajectories of the airship at each flight mode, the results were compared with the simulation. To get the reasonable data, low-pass filter and band-stop filter were designed to get rid of the sensor noise and engine vibration. The test was accomplished at cruise mode, turning mode, and deceleration. To conclude, with comparing the simulation data and flight test data, it could be known that the dynamic model used in this paper was reasonable.

Dynamic Analysis of Structure's Approaches through Field Tests in the Conventional Railway (현장계측을 통한 기존선 철도 구조물 접속부의 거동분석)

  • Park, Joon-Oh;Lee, Sang-Bae;Hong, Won-Pyo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1864-1874
    • /
    • 2007
  • Korean trains pass many mountain areas, so the volume of structures like bridge and tunnel has large part of railway lines. Train speed-up naturally needs a straight line in railway, then structures are increasing, and the length of structure has more than 70% in Kyongbu high-speed railway. The stiffness of bridge and tunnel is higher than the soil in the roadbed in spite of dynamic difference in vibration and displacement. Differences in stiffness have more dynamic effects and increase the deformation and destruction in the track and roadbed. This influences passenger's comfort and the safety of operation, and it needs more track maintenance. This study selected tunnel with ballast track, tunnel with concrete track, and structure's approaches with short maintenance cycle in the roadbed and had track acceleration tests and track liner inspections using track master in the field. This study will measure periodically to structure's approaches which have very fast track irregularity and analyze dynamic differences and track irregularity near structure's approaches, so realize the cause of track irregularity of structure's approaches and use basic data for reasonably strengthening method of structure's approaches.

  • PDF

Design of SDINS Rapid Initial Alignment Technique Robust to the Pyro-shock in Multi-Launch Rocket System (연속발사 충격에 강인한 SDINS 신속 초기정렬기법 설계)

  • Lee, Hyung-Sub;Han, Kyung-Jun;Lee, Sang-Woo;Yu, Myeong-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1038-1044
    • /
    • 2016
  • In this paper, a SDINS(Strapdown Inertial Navigation System) rapid initial alignment technique robust to the pyro-shock in multi-launch rocket system is proposed. The proposed method consists of three steps. Firth, transfer alignment is performed to estimate misalignment between MINS(Master INS) and SINS(Slave INS), and the estimated misalignment is written in the memory when transfer alignment is completed. Next, the pre-filtering process is performed to get rid of the acceleration error induced by launcher vibration. Finally, the horizontal alignment is performed to compensate misalignment variation caused by pyro-shock. We verified the performance of the proposed alignment method comparing with the conventional transfer alignment method. The simulation shows that the proposed initial alignment technique improves alignment performance.

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.

A Study on Temperature Field of Solid Disc Brake based on Thermal-mechanical Coupled Model (열-기계적 복합 모델을 기반으로 한 Solid 디스크 브레이크의 온도장에 관한 연구)

  • Wu, Xuan;Hwang, Pyung;Jeon, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.396-401
    • /
    • 2008
  • The disc-pad brake system is an important part of automobile safety system. During braking, the kinetic energy and potential energies of a moving vehicle are converted into the thermal energy through frictional heat between the brake disc and the pads. Most of the thermal energy dissipated through the brake disc. The temperature could be exceed the critical value for a given material, which leads to undesirable effects, such as the brake fade, premature wear, brake fluid vaporization, bearing failure, thermal cracks, and thermallyexcited vibration. The object of the present study is to investigate temperature field and temperature variation of brake disc and pad during single brake. The brake disc is decelerated at the initial speed with constant acceleration, until the disc comes to stop. The pad-disc brake assembly is built by 3D model with the appropriate boundary condition. In the simulation process, the mechanical loads are applied to the thermomechanical coupling analysis in order to simulate the process of heat produced by friction.

  • PDF