• Title/Summary/Keyword: Vibration Transfer

Search Result 1,053, Processing Time 0.027 seconds

Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera (적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출)

  • Kwon, DaeJu;Jung, NaRa;Kim, JaeYeol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.

Identification of Structural Defects in Rail Fastening Systems Using Flexural Wave Propagation (굽힘파 전파 특성을 이용한 레일체결장치의 구조 결함 진단)

  • Park, Jeongwon;Park, Junhong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.38-43
    • /
    • 2014
  • An experimental method based on flexural wave propagation is proposed for identification of structural damage in rail fastening systems. The vibration of a rail clamped and supported by viscoelastic pads is significantly influenced by dynamic support properties. Formation of a defect in the rail fastening system induces changes in the flexural wave propagation characteristics owning to the discontinuity in the structural properties. In this study, frequency-dependent support stiffness was measured to monitor this change by a transfer function method. The sensitivity of wave propagation on the defect was measured from the potential energy stored in a continuously supported rail. Further, the damage index was defined as a correlation coefficient between the change in the support stiffness and the sensitivity. The defect location was identified from the calculated damage index.

Design, Implementation and Test of Flight Model of X-Band Transmitter for STSAT-3 (과학기술위성 3호 X-대역 송신기 비행모델 설계, 제작 및 시험)

  • Seo, Gyu-Jae;Lee, Jung-Soo;Oh, Chi-Wook;Oh, Seung-Han;Chae, Jang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.461-466
    • /
    • 2012
  • This paper describes the development and test result of X-band Transmitter flight model(FM) of STSAT-3 by satellite research center(SaTReC), KAIST. The communication sub-system of STSAT-3 is consist of two different frequency band channels. S-band frequency is used for Telemetry & Command, and X-band frequency is used for mission data. Payload observations data in Mass Memory Unit (MMU) is modulated by QPSK modulator in X-band Transmitter, and then QPSK modulation signal is transmitted to antenna through transfer switch. In this Paper, we described the results of modulation, low-pass filter design, power amp development, and switch test. The FM XTU is delivered Spacecraft Assembly, Integration and Test(AIT) level through the completion of functional Test and environmental(vibration, thermal vacuum) Test successfully.

Vibration Analysis of Network Communication Equipment (네트워크 통신장비의 진동 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, Jin-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.463-468
    • /
    • 2007
  • Some network equipments made in Korea were exposed to severe earthquake in Japan several years ago. More than a hundred slim base transfer network stations had been seized with the severe earthquake at Nigata and it was reported that less than fifteen sets showed blackout by interruption of electricity, not by the structural failure. The purpose of this paper is to check the structural safety of the network equipments by performing table test, and the static and dynamic finite element analysis. For the dynamic test, the station weighing 200 kg was subjected to the Zone 3 earthquake loading of GR-63-CORE on the shaking table to obtain the dynamic responses to compare with the analysis results. It is shown that the FE analysis results are a little bit larger than that of the experimental values. And the sensitivity analysis and optimization for the natural frequency is performed and it is found that the first natural frequency is sensitive to small design change as shown in the results. And the dynamic response of optimized design is less than the original design.

Effects of Au Nanoparticle Monolayer on or Under Graphene for Surface Enhanced Raman Scattering

  • Kim, B.Y.;Jung, J.H.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.636-636
    • /
    • 2013
  • Since first discovery of strong Raman spectrum of molecules adsorbed on rough noble metal, surface enhanced Raman scattering (SERS) has been widely used for detection of molecules with low concentration. Surface plasmons at noble metal can enhance Raman spectrum and using Au nanostructures as substrates of SERS has advantages due to it has chemical stability and biocompatibility. However, the photoluminescence (PL) background from Au remains a problem because of obtaining molecular vibration information. Recently, graphene, two-dimensional atomic layer of carbon atoms, is also well known as PL quenchers for electronic and vibrational excitation. In this study, we observed SERS of single layer graphene on or under monolayer of Au nanoparticles (NPs). Single layer graphene is grown by chemical vapor deposition and transferred onto or under the monolayer of Au NPs by using PMMA transfer method. Monolayer of Au NPs prepared using Langmuir-Blodgett method on or under graphene surface provides closed and well-packed monolayer of Au NPs. Scanning electron microscopy (SEM) and Raman spectroscopy (WItec, 532 nm) were performed in order to confirm effects of Au NPs on enhanced Raman spectrum. Highly enhanced Raman signal of graphene by Au NPs were observed due to many hot-spots at gap of closed well-packed Au NPs. The results showed that single layer graphene provides larger SERS effects compared to multilayer graphene and the enhancement of the G band was larger than that of 2D band. Moreover, we confirm the appearance of D band in this study that is not clear in normal Raman spectrum. In our study, D band appearance is ascribed to the SERS effect resulted from defects induced graphene on Au NPs. Monolayer film of Au NPs under the graphene provided more highly enhanced graphene Raman signal compared to that on the graphene. The Au NPs-graphene SERS substrate can be possibly applied to biochemical sensing applications requiring highly sensitive and selective assays.

  • PDF

Er(III)-chelated Prototype Complexes Based on Benzoate and Pentafluorobenzoate Ligands : Synthesis and Key Parameters for Near IR Emission Enhancement

  • Roh, Soo-Gyun;Oh, Jae-Buem;Nah, Min-Kook;Baek, Nam-Seob;Lee, Young-Il;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1503-1507
    • /
    • 2004
  • New synthetic methodology of the saturated and unsaturated Er(III)-chelated prototype complexes based on benzoate and pentafluorobenzoate ligands was developed through ligand-exchange reaction. The saturated 8-coordinated Er(III) complexes exhibit stronger near-IR emission than those of the unsaturated 6-coordinated Er(III) complexes, obtained from the direct photoexcitation of Er ions with 488 nm. Three $H_2O$ molecules coordinated in the unsaturated 6-coordinated complexes seriously quenched the near IR emission by the harmonic vibration relaxation decay of O-H bonds. Also, the stronger emission of the Er(III) complexes was obtained by the indirect photoexcitation of ligands than by the direct photoexcitation of the Er(III) ions, due to the energy transfer between the excited ligand and the erbium ion. Furthermore, the saturated Er(III)-chelated complex with C-F bonds shows much stronger near IR emission than that of the saturated Er(III)-chelated complex with C-H bonds. It is attributed to the influence of C-F bonds on near IR emission.

A Study of Life Characteristic of Hydraulic Hose Assembly by Adopting Complex Accelerated Model with Acceleration Factors of Pressure and Temperature (압력과 온도 복합가속모형을 적용한 유압호스 조립체 수명특성 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Cho, You-Hee;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1697-1703
    • /
    • 2010
  • Hydraulic hoses are used as pipelines for transferring power from hydraulic systems in various machineries such as construction equipments, automobiles, and aircraft. Hydraulic hoses protect the system from vibration or impacts, and they are being used to transfer energy in all segments of the industry. In order to protect the system from various external environmental conditions, hydraulic hose assemblies must be able to withstand a wide range of temperatures and pressures, as well as variations in other factors. In previous studies, an acceleration model for the hydraulic hose assembly was developed by taking into account only one of the acceleration factors (temperature or pressure). Therefore, the objective of this study is to develop a comprehensive acceleration model that takes both temperature and pressure into consideration.

Dynamic Characteristics of Pressure Propagation According to Boundary Condition Changes in a Transmission Line (경계조건변화에 따른 동력전달관로의 동특성)

  • 나기대;유영태;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.75-82
    • /
    • 2002
  • Design for a quiet operation of fluid power system requires the understanding of noise and vibration characteristics of the system. It's not easy to analyze noise problem in hydraulic cylinder used in typical actuator Because they've got complex fluid dynamics. One of the fundamental problems associated with the hydraulic system is the pulsating flow in pipe lines, which can be tackled by the analysis under simplifying assumptions. The present study focuses on theoretic analysis and experimental study on the dynamics of laminar pulsating flow in a circular pipe. We analyze the propagation characteristics of the pressure pulse within a hydraulic pipe line taking into account the pulsating flow frequency variation. We also measure instantaneous pressure pulses within pipe line to identify the transfer functions. We conduct series of experiments to investigate the propagation characteristics of pressure pulse for various pressure of pulsating flow. The working fluid of the present study is ISO VG46 and the temperature ranges from 20 to $60^{\circ}$ with normal pressure at 4000kPa. The flow rate is measured by using an ultrasonic flow meter. Pressures at fixed upstream and downstream positions are measured concurrently. The electric signals of the pressure sensor are stored and analyzed using a system analyzer(PKE 983 series). The frequency is varied in the range of 10~500Hz. The Reynolds number is kept below 2,000. In the present study, boundary condition was varied by installing a surge tank and an orifice at the end of pipe. Experimental and theoretical results were compared each other under various boundary conditions.

A Method for the Preliminary Estimation of Vertical Natural Vibations of High Speed Boats (고속선(高速船) 선체고유상하진동(船體固有上下振動)의 초기추정(初期推定) 방법(方法))

  • K.C.,Kim;H.B.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.25-29
    • /
    • 1980
  • For the preliminary estimation of the vertical hull natural frequency, the Schlick's or Schlick-type formulae have been traditional ones and are still in common use today. Some investigators have made their efforts, based on statistical data of ships' system parameters, to extend the applicability of Schlick-type formulae to higher modes, or to utilize the Rayleigh method. For instance, the work done by Dinsenbacher et al.[5] belongs to the former and that of Nagamoto et al.[6] to the latter. In a part of his previous paper[7], the author, investigating the case of a cargo ship of medium size, suggested that provided statistically simplified curves such as trapezoid of system parameter distributions are available in hands, direct utlization of an ordinary computer program can be also an another convenient method by which we can obtain both natural frequencies and normal mode shapes. In this paper, to confirm the feasibility of the above suggestion, four high speed boats are investigated. The system parameters of them are originally given in [5]. The computer program used here is one confiled based on a calculation method derived from Myklestal-Prohl modeling of hull, transfer matrix formulation and an extended Gumbel's initial value method for solving frequency equation. The results of the investigation show that the direct calculation based on statistically oriented and reasonably assumed trapezoidal mean curves of system parameter distributions can give us natural frequencies within about 5% deviation up to several-noded modes and normal mode shapes serviceable at least up to 4- or 5-noded modes in comparision with those based on actual distributions of system parameters. For this simplified method the actual data required for input are only of ship length, displacement, total added mass, bending and shear rigidity at amidship. They are available at the early stage of design. By this method we can also easily trace variations of vibration characteristics in the course of ship design cycles.

  • PDF

Design and Evaluations of Underwater Hydrophone with Self Noise Suppressing Structures -Part Ⅰ. Noise Transfer Characteristics & Effects of Structure Modifications - (저 잡음 수중 청음기의 설계 방안 연구 -Ⅰ. 잡음 전달 특성 및 구조 변경 영향 -)

  • Im, Jong-In;Roh, Young-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.10-15
    • /
    • 1997
  • The hydrophones is mounted in many applications on a vibrating surface and functions as an underwater acoustic signal receiver without sensing the vibrations from the mounting surface. However, their performance is usually degraded by the interference of exterior noises such as acoustic cavitation in water stream, host structural vibration in the hull, and propeller motions. This paper describes the design and evaluation of a self noise suppressing hydrophones which shows very poor sensitivity to the external noises, first, effects of the external noise on the its receiver performance is simulated with finite element method(FEM). Second, the geometrical variations are implemented on the original structure that include additional air pockets and acoustic walls which work as acoustic shied or scatter of the noises. The results show that the effect of the external noise is the most significant when it is applied near to the bottom of the side wall of the hydrophones. The transverse noise induced by the outside water flow is isolated most effectively when a thin compliant (damping) layer combined with two air pockets is inserted to the circumference of the nose. Noise level is reduced about fifty nine percent of that of the original structure.

  • PDF