• 제목/요약/키워드: Vibration Time Analysis

검색결과 1,522건 처리시간 0.031초

자동차용 연료펌프의 진동 저감에 대한 연구 (A Study on the Vibration Reduction of an Automobile Fuel Pump)

  • 김병진;원홍인;이성원;박상준;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.772-777
    • /
    • 2013
  • This article presents the reduction of vibration generated by an automobile fuel pump. In order to analysis the vibration of the fuel pump, a simplified dynamic model is established, which is composed of a rigid rotor and a equivalent springs. The equivalent stiffnesses of the upper and lower assemblies are evaluated by the comparison of modal testing results and the finite element analysis. the stiffness for the oil film of the journal bearing is extracted by using Reynold's equation. In addition, the time responses for the vibration of the fuel pump are computed by using a commercial multi-body dynamics software, RecurDyn. Based on these results, some design suggestions are proposed to reduce the vibration of an automobile fuel pump.

  • PDF

Roll에 의해 지지되어 가진력을 받는 직사각형 평판의 진동해석에 관한 연구 (A Study on Vibration Analysis of Roll-supported Rectangular Plate Subjected to Excitation)

  • 윤대성;황원걸;이돈출;김우영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1010-1014
    • /
    • 2001
  • A severe strip vibration in continuous galvanizing line facilities of the steel companies has sometimes occurred due to the exceeding wearing of the roll bush and bearing. This vibration brings on the lack of uniform coating thickness in steel plate. As a result, the total maintenance and product costs in this factory are increased by the shortage of operation time for the replacement of bush, bearings and these components. In this study, the vibration characteristics of this strip are investigated by the FEM using ANSYS. Also the vibration measurement of strip and its structure performed by the laser Doppler vibrometer(LDV) and accelerometers are compared to theoretical analysis results.

  • PDF

Time-frequency analysis of reactor neutron noise under bubble disturbance and control rod vibration

  • Yuan, Baoxin;Guo, Simao;Yang, Wankui;Zhang, Songbao;Zhong, Bin;Wei, Junxia;Ying, Yangjun
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1088-1099
    • /
    • 2021
  • Time-frequency analysis technique is an effective analysis tool for non-stationary processes. In the field of reactor neutron noise, the time-frequency analysis method has not been thoroughly researched and widely used. This work has studied the time-frequency analysis of the reactor neutron noise experimental signals under bubble disturbance and control rod vibration. First, an experimental platform was established, and it could be employed to reactor neutron noise experiment and data acquisition. Secondly, two types of reactor neutron noise experiments were performed, and valid experimental data was obtained. Finally, time-frequency analysis was conducted on the experimental data, and effective analysis results were obtained in the low-frequency part. Through this work, it can be concluded that the time-frequency analysis technique can effectively investigate the core dynamics behavior and deepen the identification of the unstable core process.

영구자석형 직류전동기 축계의 유한요소모델 개선과 진동해석 (Finite Element Model Updating and Vibration Analysis of PMDC Motor Rotor System)

  • 김용한;하종룡;이재갑;김선화;양보석
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.20-27
    • /
    • 2007
  • In this paper, finite element modeling was performed for vibration analysis of a rotor system installed in sunroof motor, and analysis process was developed for natural frequency and unbalance response analysis. At the same time, to reduce analysis modeling error caused by the difference between analysis and measured values, finite element model updating was conducted using an optimization algorithm, i.e. hybrid genetic algorithm and simulated annealing (HGASA) method. For this end experimental modal test was carried out and by using the measured frequency response function (FRF), model updating was performed considering both cases where core coil was removed and included. And acceptable result was obtained. Also, dynamic property coefficient of bush bearing which influences vibration response of the rotor system was estimated.

  • PDF

변조좌표계를 이용한 비대칭/비등방 회전체의 모드 해석 (Modal analysis of asymmetric/anisotropic rotor system using modulated coordinates)

  • 서정환;홍성욱;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.304-309
    • /
    • 2003
  • A new modal analysis method for rotor systems with periodically time-varying parameters is proposed. The essence of method is to introduce modulated coordinates to derive the equivalent time-invariant equation. This paper presents a modal analysis method using modulated coordinates fur general rotors, of which rotating and stationary parts both possess asymmetric properties. The equation of motion with time-varying parameters is transformed to an infinite order matrix equation with the time-invariant parameters. A theory of modal analysis for the system is presented with the infinite order equation and a couple of reduced order equations. A numerical example with simple asymmetric rotor is provided to demonstrate the effectiveness of the proposed method

  • PDF

Pulse ESPI System을 이용한 모형교량의 진동특성해석 (Vibration Characteristic Analysis of Bridge Simulator by Pulse ESPI System)

  • 최정구;김경석;장호섭;강명구;김성식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1433-1437
    • /
    • 2005
  • Until now, strain gage technique and accelerometer for the diagnosis safety of constructions are used widely. However, the limits of these methods are revealed. But Electronic Speckle Pattern Interferometry(ESPI) that uses Pulse Laser is noncontact, whole-field, real-time measuring method also dull to disturbance and can achieve test result in a very short time. It has various strong point in spot application, swift establishment, and dynamic conduct analysis for the entire field of Laser illuminate. This author analyzed vibration characteristic of using the Pulse ESPI System, the diagnosis safety of bridges, to simplify the analysis of the dynamic conduct of a large construction.

  • PDF

수송체 구조물의 진동특성에 관한 설계민감도 해석 (Design Sensitivity Analysis for the Vibration Characteristic of Vehicle Structure)

  • 이재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1992년도 추계학술대회논문집; 반도아카데미, 20 Nov. 1992
    • /
    • pp.19-24
    • /
    • 1992
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN on the super computer CRAY2S, and sensitivity computation is carried on PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

시간-주파수 기법을 이용한 배관 감육 감시 방법 (Monitoring Pipe Thinning Using Time-frequency Analysis)

  • 손창호;박진호;윤두병;정의필;최영철
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1224-1230
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time -frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

구조물의 연직진동해석을 위한 응답 스펙트럼 해석법의 활용 (Application of Response Spectrum Analysis Method for the Estimation of the Vertical Vibration in Structures)

  • 이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.12-19
    • /
    • 1998
  • Response spectrum analysis method is widely used for seismic analysis of building structure. Analysis of structural vibration for equipment, machine and moving loads are executed by time history analysis. This method is very complex, difficult and tedious. In this study, maximum response of structure for this case are simply and fast. calculated by mode shape and response spectrum for excitation. At first, Response spectrum and time history analysis for some earthquake is carried and investigate the error of maximum displacement response for R. S. A. Secondly, The process for response spectrum analysis in excitation are calculated, and maximum model response are combined by CQC (Complete Quadratic Combination) methods. Finally, Combining maximum displacement response is compared with one of time history analysis.

  • PDF

On methods for extending a single footfall trace into a continuous force curve for floor vibration serviceability analysis

  • Chen, Jun;Peng, Yixin;Ye, Ting
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.179-196
    • /
    • 2013
  • An experimentally measured single footfall trace (SFT) from a walking subject needs to be extended into a continuous force curve, which can then be used as load for floor vibration serviceability assessment, or on which further analysis like discrete Fourier transform can be conducted. This paper investigates the accuracy, applicability and parametrical sensitivity of four extension methods, Methods I to IV, which extends the SFT into a continuous time history by the walking step rate, stride time, double support proportion and the double support time, respectively. Performance of the four methods was assessed by comparing their results with the experimentally obtained reference footfall traces in the time and frequency domain, and by comparing the vibrational response of a concrete slab subjected to the extended traces to that of reference traces. The effect of the extension parameter on each method was also explored through parametrical analysis. This study finds that, in general, Method I and II perform better than Method III and IV, and all of the four methods are sensitive to their extension parameter. When reliable information of walking rate or gait period is available in the test, Methods I or II is a better choice. Otherwise, Method III, with the suggested extension parameter of double support time proportion, is recommended.