• Title/Summary/Keyword: Vibration Test & Analysis

Search Result 1,625, Processing Time 0.031 seconds

Vibration Analysis of Beam Supported by Plate Type Springs Considering a Contact (접촉해석이 연계된 판형 스프링 지지보의 진동해석)

  • 최명환;강흥석;윤경호;송기남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.384-392
    • /
    • 2003
  • The fuel rods in the Pressurized water reactor are continuously supported by a spring system called a spacer grid which is one of the main structural components for the fuel rod cluster(fuel assembly). The fuel rods vibrate within the reactor due to coolant flow. Since the vibration, which is called flow-induced vibration(FIV) can wear away the surface of the fuel rod, it is important to understand it's vibration characteristics. In this paper, the vibration analyses and the tests for the dummy rods supported by New Doublet(ND) spacer grids are described. A new FE model which reflects the contact area between the rod and ND spacer grid spring is developed to replace the previous one by which a good agreement could not be obtained with the vibration test. The natural frequency and mode shape calculated by both the Previous FE model and the new one are compared with those of experiment for a single-spanned rod supported by two ND spacer grids. The results of the new model showed good agreement with the experiment compared with those of previous model. In addition. the new FE model is applied to the vibration analysis for the dummy rod of 2.189 mm tall continuously supported by five ND spacer grids. It is also obtained that the analysis results of the new FE model well agreed to experiment ones as the single-spanned rod.

Vibration Analysis of wind turbine gearbox with frequency response analysis (주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석)

  • Park, Hyunyong;Park, Junghun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

Vibration Analysis of Beam Supported by Springs Considering a Contact (접촉해석이 연계된 스프링 지지보의 진동해석)

  • 최명환;강홍석;송기남;윤경호;김형규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1216-1221
    • /
    • 2002
  • The fuel rods in the pressurized water reactor are continuously supported by a spring system called a spacer grid which is one of the main structural components for the fuel rod cluster (fuel assembly). The fuel rods are vibrating within the reactor due to coolant flow. Since the vibration, what is called flow-induced vibration(FIV), can wear away the surface of the fuel rod, it is important to understand the vibration characteristics of it. In this paper, the vibration analyses and the tests for the dummy rods supported by New Doublet(ND) spacer grids are described. A new FE model which reflects the contact area between the rod and ND spacer grid spring is developed to replace the previous one by which a good agreement could not be obtained with the vibration test. The natural frequency and mode shape calculated by both the previous FE model and the new one are compared with those of experiment fur a single-spanned rod supported by two ND spacer grids. The results by the new model show good agreement to experiment as compared with the ones by previous model. In addition, the new FE model is applied to the vibration analysis fur the dummy rod of 2.19 m tall continuously supported by five ND spacer grids. It is also obtained that the analysis results by the new FE model well agree to experiment ones as the single-spanned rod.

  • PDF

A Study on the Blasting Dynamic Analysis Using Superposition Modeling Data (중첩모델링자료를 활용한 발파 동해석 기법에 관한 연구)

  • Park, Ji-Woo;Kang, Choo-Won;Go, Jin-Seok;Jang, Ho-Min
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.280-288
    • /
    • 2008
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis using measurement vibration waveform which is measured by bore hole blasting or test blasting has been increased recently in order to analyze the effect of the blast-induced vibration. The waveform made by bore hole blasting has the similar vibration level and duration to those the waveform of sing hole has. However, there can be a little difference in attenuation characteristics with the blast induced vibration waveform in the field. Through the superposition modeling of single hole waveform, I obtained the vibration waveform on the blasting condition changes and conducted dynamic analysis using this waveform in this study.

Analysis of Vibration Characteristics for a Molded Dry-type Potential Transformer (몰드형 건식 계기용 변압기 진동 특성 분석)

  • Kim, Moosun;Jang, Dong Uk;Kim, Seung Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.209-214
    • /
    • 2017
  • Most of the present potential transformers of train vehicles are of the oil-type filled with insulating oil and are susceptible to problems such as explosion due to the increase in the internal pressure during train operation and poor reliability near the end of their life cycle. As a solution to this problem, it is necessary to develop a molded dry-type potential transformer with excellent pressure-resistance performance using insulating resin. In order to localize the product, the Korea Railroad Research Institute has been developing a molded dry-type potential transformer. As part of this research, it is necessary to analyze the vibration characteristics of the developed product and to check the transformer performance in a vibration environment. In this study, a resonance test and simulated long-term life test of the developed product were conducted according to the KS R 9144 and IEC 61373 standards, respectively, which are vibration test methods for railway vehicle parts. Their natural frequencies were analyzed by comparing the results of the numerical modal analysis and resonance test, in order to confirm their adherence to the standards. Also, the performance test after the simulated long-term life test confirmed that the operation of the developed transformer was not problematic even in a long-time vibration environment.

Vibration fatigue prediction using design sensitivity analysis (설계 민감도 해석을 활용한 진동내구 예측방법 연구)

  • Kim, Chan-Jung;Ju, Hyung-Jun;Shin, Sung-Young;Kwon, Sung-Jin;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.488-493
    • /
    • 2011
  • Authors previously suggested the design sensitivity analysis based on transmissibility function and identified the sensitivity of measured point over the small modification of system dynamics. On the other hand, the acceleration data will not reveal the strain information at the same location and authors suggested energy isoclines that successfully predict the fatigue damage on the interesting location to overcome the drawback of acceleration over fatigue society. Both of methodologies, sensitivity analysis and fatigue damage prediction, commonly use the response acceleration response as main indicator. In this paper, authors investigate the advanced method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with finite element model of a simple notched specimen and the prediction of fatigue damage at notched location is conducted for accelerations at different measurement locations that show different sensitivity contribution, either.

  • PDF

Rotating Frequency Analysis of a Helicopter Rotor Blade with Swpt Tips (후퇴각 날개끝이 있는 헬리콥터 로터깃의 회전주파수 해석)

  • ;Yang, Wei Dong
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.229-239
    • /
    • 2000
  • To reduce the drag rise on the advancing helicopter rotor blade tips, the tip of the blade is modified to have sweep, anhedral and pretwist. The equations of motion of rotor blade with these tip angles were derived using Hamilton principle, programmed using FORTRAN and named as ARMDAS(Advanced Rotorcraft Multidisplinary Design and Analysis System). Rotating frequency analysis of rotor blades with swept tipe was performed that is necessary in conceptual and preliminary design phases of the helicopter design. Vibration analysis of non-rotating blades was also accomplished and compared with MSC/NASTRAN resutls for the basis of comparison with the vibration test data. The rotating frequency analysis of blades with an actual rotor blade data was also performed to verify coded program and to check the possibility of a resonance of an actual rotor blade at the specific rotating speed.

  • PDF

Free Vibration Analysis of a Core Support Barrel by Experimental and Analysis Methods (실험 및 해석을 통한 노심지지 원통쉘의 자유진동해석)

  • 김월태;정명조;송선호;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.217-222
    • /
    • 1997
  • Free vibration analysis of a Core Support Barrel shell structure is studied through experimental and finite element analysis methods. The structure is considered to be a thick shell with the ratio of thickness to radius 3/10. Finite element model is established by solid model with brick elements. Modal analyses are performed with respect to the various ratios of thickness to radius with clamped-free and free-free boundary conditions. Experimental test is done to find out how well the results are agreed with those of analysis. The comparison of the results from experiment and analysis shows a good agreement between them in general.

  • PDF

A Study on the Reduction of Differential Vibration of FR Passenger Car (후륜구동 승용차의 디퍼렌셜 진동저감에 관한 연구)

  • 최은오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.316-321
    • /
    • 1997
  • The purpose of this study is to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined, the validity of the simulation model was checked by the field test and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration differential gear by applying flexible coupling.

  • PDF

Vibration Characteristics Analysis of the Communication Satellite Transponder Equipment (통신위성 중계기 부품의 진동특성 해석)

  • 김현수;이명규;박종흥;김성종;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.374-379
    • /
    • 2001
  • The satellite electronic equipment is exposed to high level random vibration environment during the launch of spacecraft. The random vibration can cause damage of electronic equipment. Thus very careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of transponder equipments of communication satellite. For the structural integrity of the communication satellite transponder equipment under qualification level random vibration, Finite Element analysis was carried out using the commercial code, MSC/Nastran and ANSYS and stress levels are presented. In order to validate the femodel, modal test was also performed and compared with numerical results.

  • PDF