• Title/Summary/Keyword: Vibration Stimulation

Search Result 102, Processing Time 0.041 seconds

Effect of Whole Body Vibration Training on Proprioception and Tactile in Spastic Cerebral Palsy (전신진동 자극 훈련이 경직형 뇌성마비 아동의 고유수용감각 및 촉각에 미치는 영향)

  • Yun, Hye-Lyeong;Lee, Eun-Ju
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.103-113
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effects of whole-body vibration stimulation on proprioception and tactile in patients with spastic cerebral palsy. Methods: This study was conducted on 9 children diagnosed with spastic cerebral palsy. Of the single case study methods, the ABAB design was employed in this study. Out of a 12-week study period, three weeks were allocated to each of two baseline periods and two intervention periods. The exercise was performed twice a week for 30 minutes. A general trunk stabilization exercise was performed during the baseline period and a trunk stabilization exercise accompanied with whole-body vibration was performed during the intervention period. Evaluation was performed five times in total: before the experiment, after baseline 1, after intervention 1, after baseline 2, and after intervention 2. To determine the effect of the exercise method, a skin sensory evaluation tool (monofilament kit) and a trunk proprioception sensor (digital dual inclinometer) were used. To compare the effects of the exercises at baseline and after intervention, an analysis of variance on repeated measures (repeated ANOVA) was performed to analyze the data. Results: The results showed that there were statistically significant increases from baseline in the means of proprioception and tactile during the intervention period with whole-body vibration (p <.05). Conclusion: Whole-body vibration can be proposed as an effective intervention method for improving the proprioception and tactile in children with spastic cerebral palsy, and this exercise method is expected to be actively used in clinical practice.

The Effect of Stress Reduction of Human Body by the Vibroacoustic Equipment (음향진동장치에 의한 인체의 스트레스 저감효과)

  • Moon, D.H.;Kim, Y.W.;Kang, H.J.;Choi, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1063-1068
    • /
    • 2007
  • The present study describes the effects of music and vibroacoustic stimuli to the relaxation of human body. We have carried out the experiment on 6 human subjects of which are composed 3men and 3women. We have investigated the electroencephalogram(EEG) of all subjects before and after the stimuli of which are made a strong noise or the meditatiom music and the acoustic vibration. The vibroacoustic device has transmitted meditation music as vibration between 20Hz and 250Hz to the body. From the experimental results, we made sure the effects that the meditation music and vibroacoustic stimuli influenced the stress reduction of human body for good as alpha-wave was increased continuously during the good stimuli and after that.

  • PDF

A Proposal of Output Method of Round Window Stimulation Type Middle Ear Implants using Acoustic Transmission (공기 전도형 출력을 갖는 정원창 자극형 인공중이의 출력방식 제안)

  • Seong, Kiwoong;Lee, KyuYup;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.678-684
    • /
    • 2018
  • In order to broaden the indication of middle ear implant, research has been actively conducted on the reverse output method that stimulates the round window. However, it is very difficult to transmit the vibration output effectively because the indivisual anatomical difference of the round window niche is very large and also the visual field is not secured even by a skilled otolaryngologic surgeon. In this paper, we propose a new reverse stimulation method of middle ear implants that transmits energy to the inner ear by using air as a medium. This can compensate for the disadvantages of the conventional method of transmitting vibration energy and minimizes the energy transfer efficiency interference due to the combination of the excitation point and the output device. It was shown that forward and backward transfer characteristics were obtained by cadaveric experiments, and it was shown that it can overcome the acoustical impedance of high round window and transmit energy to inner ear. The receiver, which is the output device of the conventional hearing aids, can generate a constant volume velocity, so it can have a high output at a limited volume, such as a round window niche. So, suggested method can overcome the high acoustical impedance of the round window and deliver acoustic energy to the inner ear.

Effects of Whole Body Vibration Training on Lower Limb Muscle Thickness and Gross Motor Function in Children with Spastic Cerebral Palsy (전신 진동자극 훈련이 경직형 뇌성마비 아동의 하지 근 두께와 대동작 운동기능에 미치는 영향)

  • Lee, Won-Bin;Lee, Han-Suk;Park, Sun-Wook;Yoo, Jun-Ki
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.4
    • /
    • pp.195-201
    • /
    • 2019
  • PURPOSE: This study aimed to quantify the effects of whole body vibration (WBV) stimulation training on the muscle thickness and gross motor function in children with spastic cerebral palsy. METHODS: Twenty children diagnosed with spastic cerebral palsy were assigned randomly to the Whole Body Vibration (WBV) group (n=10) and control group (n=10). The WBV group received vibration therapy including five different therapy, and the control group received only five general physiotherapy sessions. After 10 weeks of intervention, the muscle thickness was measured using ultrasound, and the Gross Motor Function D and E items were evaluated. RESULTS: After the intervention, both groups showed a significant increase in muscle thickness and gross motor function (p<.05). The WBV group showed a significant increase in the quadriceps femoris and tibialis anterior muscles compared to the control group, whereas no significant increase in the gastrocnemius muscle was observed (p<.05). The WBV group showed significant improvement in the Gross Motor Function D and E scores compared to the control group (p<.05). CONCLUSION: WBV training may be a useful way of improving the lower extremity muscle strength in children with spastic cerebral palsy, which may help improve the gross motor function.

Is There Any Immediate Difference between Pulmonary Function and Respiratory Muscle, with or without Vibration Stimulation in Respiratory Resistance Training? (진동 자극 유무에 따른 호흡 저항 훈련 시 폐 기능과 호흡근의 즉각적인 차이가 있을까?)

  • Park, Jin-Young;Kim, Ye-Seul;Park, Hyun-Ju;Lee, Myung-Mo
    • Journal of Korean Physical Therapy Science
    • /
    • v.25 no.3
    • /
    • pp.17-24
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effect of whole body vibration combined breathing resistance on lung capacity and respiratory muscle and to suggest a mediation method for improvement of respiratory function and lung function in the future. Methods: This study was a preliminary study design of two groups of 54 healthy young adults who were randomly assigned to an experimental group (n=27) with core exercise combined with respiratory resistance and whole body vibration and a control group with respiratory resistance and core exercise (n=27). All interventions consisted of 6 core exercises every 40 seconds and rest for 20 seconds. To compare the effects of intervention, we measured spirometry and respiratory muscle strength. Results: Both the experimental group and the control group showed a significant increase in Forced vital capacity (FVC) and Maximum voluntary ventilation (MVV) (p<.05). However, FEV1 and FEV1% were significantly increase only in the experimental group (p<.05). FVC, FEV1%, Maximum Inspiratory Pressure (MIP), Maximum Expiratory Pressure (MEP) showed more significant increase in the experimental group than the control group. Conclusion: These findings indicate that whole-body vibration combined breathing resistance is an effective intervention for people, with FVC, FEV1%, MIP, MEP increase.

Effectiveness of Focal Muscle Vibration on Upper Extremity Spasticity and Function for Stroke Patients : A Systematic Review (뇌졸중 환자의 상지 경직 감소와 기능 향상을 위한 국소 진동자극의 효과에 대한 체계적 고찰)

  • Won, Kyung-A;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.3
    • /
    • pp.23-33
    • /
    • 2018
  • Objective : This systematic review aimed to investigate the effect of focal muscle vibration in patients with post-stroke spastic hemiplegia. Methods : We searched literature published between April 2009 and October 2017 using PubMed and RISS databases. The main search terms were Vibration therapy, Focal vibration, Somatosensory, Upper limb, and Spasticity after stroke. Based on inclusion/exclusion criteria, 6 articles were selected. Results : Articles on focal muscle vibration intervention ranged from evaluation of application-only vibration to muscle vibration with task-oriented activity. Intervention effects on upper extremity spasticity and function and activities of daily living were assessed. There were significant effects on upper extremity spasticity, function, and cortical excitability. Conclusions : This study can provide information on focal muscle vibration for use by clinical therapists. However, further studies are needed to identify the optimal stimulation site and frequency/amplitude of application to maximize the effects of focal muscle vibration.

Tactile Sensation Display with Electrotactile Interface

  • Yarimaga, Oktay;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.145-150
    • /
    • 2005
  • This paper presents an Electrotactile Display System (ETCS). One of the most important human sensory systems for human computer interaction is the sense of touch, which can be displayed to human through tactile output devices. To realize the sense of touch, electrotactile display produces controlled, localized touch sensation on the skin by passing small electric current. In electrotactile stimulation, the mechanoreceptors in the skin may be stimulated individually in order to display the sense of vibration, touch, itch, tingle, pressure etc. on the finger, palm, arm or any suitable location of the body by using appropriate electrodes and waveforms. We developed an ETCS and investigated effectiveness of the proposed system in terms of the perception of roughness of a surface by stimulating the palmar side of hand with different waveforms and the perception of direction and location information through forearm. Positive and negative pulse trains were tested with different current intensities and electrode switching times on the forearm or finger of the user with an electrode-embedded armband in order to investigate how subjects recognize displayed patterns and directions of stimulation.

  • PDF

The Effects of the Range of Motion of Joint with Vibratory Stimulation of the Patients of Adhesive Capsulitis of the Shoulder (진동적용이 견관절 유착성관절낭염 환자의 관절가동범위에 미치는 영향)

  • Choi, Woohyuk;Lee, Jinhwan;Min, Dongki;Choi, Junhhee;Shin, Sohong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.77-83
    • /
    • 2015
  • The purpose of this study is to prove the increase of range of motion of shoulder joint in the patients with shoulder adhesive capsulitis by applying the vibratory stimulation. In terms of subjects of the study, the experimental group 15(4 male, 11 female)and the control group 15(5 male, 10 female) were divided. The measurement of the shoulder range of motion was taken by measuring the degrees of flexion, abduction, and external rotation with a goniometer from pre treatment to one to four weeks. The results were as follows : In the experimental group and control group, there was the statistical significance in the range of motion of the shoulder flexion, abduction, and external rotation during four weeks. In summary, the vibratory stimulation are effective interventions for improving shoulder adhesive capsulitis, patient's range of motion of shoulder joint.

Change of Extracellular Matrix of Human Vocal Fold Fibroblasts by Vibratory Stimulation (진동이 성대세포주의 세포외기질 변화에 대한 연구)

  • Kim, Ji Min;Shin, Sung-Chan;Kwon, Hyun-Keun;Cheon, Yong-Il;Ro, Jung Hoon;Lee, Byung-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.1
    • /
    • pp.15-23
    • /
    • 2021
  • Background and Objectives During speech, the vocal folds oscillate at frequencies ranging from 100-200 Hz with amplitudes of a few millimeters. Mechanical stimulation is an essential factor which affects metabolism of human vocal folds. The effect of mechanical vibration on the cellular response in the human vocal fold fibroblasts cells (hVFFs) was evaluated. Materials and Method We created a culture systemic device capable of generating vibratory stimulations at human phonation frequencies. To establish optimal cell culture condition, cellular proliferation and viability assay was examined. Quantitative real time polymerase chain reaction was used to assess extracellular matrix (ECM) related and growth factors expression on response to changes in vibratory frequency and amplitude. Western blot was used to investigate ECM and inflammation-related transcription factor activation and its related cellular signaling transduction pathway. Results The cell viability was stable with vibratory stimulation within 24 h. A statistically significant increase of ECM genes (collagen type I alpha 1 and collagen type I alpha 2) and growth factor [transforming growth factor β1 (TGF-β1) and fibroblast growth factor 1 (FGF-1)] observe under the experimental conditions. Vibratory stimulation induced transcriptional activation of NF-κB by phosphorylation of p65 subunit through cellular Mitogen-activated protein kinases activation by extracellular signal regulated kinase and p38 mitogen-activated protein kinases (MAPKs) phosphorylation on hVFFs. Conclusion This study confirmed enhancing synthesis of collagen, TGF-β1 and FGF was testified by vibratory stimulation on hVFFs. This mechanism is thought to be due to the activation of NF-κB and MAPKs. Taken together, these results demonstrate that vibratory bioreactor may be a suitable alternative to hVFFs for studying vocal folds cellular response to vibratory vocalization.

The Effect of Human Lower Limb Vibration on Postural Stability during Unstable Posture (불안정한 자세에서 하지에 인가한 진동자극이 자세 안정성 개선에 미치는 영향)

  • Eun, H.I.;Yu, M.;Kim, D.W.;Kwon, T.K.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.628-635
    • /
    • 2007
  • We studied the effect of vibratory stimulations of different leg muscles, tibialis anterior(TA) and triceps surae(TS), and plantar zones in ten healthy subjects during 1) quiet standing, 2) forward lean of body, 3) backward lean of body, 4) right lean of body, and 5) left lean of body. The experiments were performed on the force platform. The effect of vibration were measured by monitoring the area of COP(Center of pressure) sway. The subjects wore a vibratory stimulation system on foot and ankles and were given the instruction not to resist against the applied perturbations. The results show that all vibratory stimulations to lower limb muscles and plantar zones reduced the COP sway area. This reduction of the COP sway area occurred also in partial vibratory stimulations during quiet standing. In forward lean of body, vibratory stimulations to TA reduced the COP sway area. During backward lean of body, vibratory stimulations to TS reduced the COP sway area. When the subject was tilted right, vibratory stimulations to left plantar zone reduced the COP sway area. During left lean of body, vibratory stimulations to right plantar zone reduced the COP sway area. Thus, the influence of vibratory stimulations to leg muscle and plantar zones differed significantly depending on the lean of body. We suggest that the vibration stimuli from leg muscles and plantar zones could be selectively used to help maintaining postural balance stable.