• Title/Summary/Keyword: Vibration Stimulation

Search Result 102, Processing Time 0.028 seconds

Vibration Response of a Human Carpal Muscle (인체 수관절 근육의 진동 응답)

  • Chun, Han-Yong;Kim, Jin-Oh;Park, Kwang-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • This paper examines the dynamic characteristics of a human carpal muscle through theoretical analysis and experiment. The carpal muscle was modeled as a 1-DOF vibration system and vibration response due to a ramp function force was calculated. The electromyogram signal corresponding to the muscle excitation force was measured, and the excitation force function of an envelope curve from the electromyogram signal was extracted. The ramp input function of electrical stimulation to the carpal muscle was applied by using a device for functional electrical stimulation, and the angular displacements corresponding to steady state response were measured. Theoretical calculations of the vibration response displacements were compared with the experimental results of the angular displacements, and have shown a good agreement with the result that is linearly proportional to the excitation force magnitude. As a result, the relationship between the input current of the electrical stimulation and the excitation force magnitude was inferred. The result was shown that it can be applied to develop rehabilitation training devices.

Wireless Vibration Measurement System Using a 3-Axial Accelerometer Sensor (3축 가속도 센서 기반의 무선 진동 측정 시스템)

  • Yoo, Ju-Yeon;Park, Geun-Chul;Jeon, Ah-Young;Kim, Cheol-Han;Kim, Yun-Jin;Ro, Jung-Hoon;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.131-136
    • /
    • 2011
  • In this study, a compact wireless vibration measurement system was developed using a 3-axial accelerometer in order to evaluate the vibration stimulation system. A low power microprocessor chip integrated with 2.4 GHz RF transceiver was used for the wireless data communication. To evaluate the system, the frequencies and accelerations from the vibration stimulation system were measured using an LVDT sensor and a vibration measurement system. The average frequency difference by the measurement system was less than 0.1 Hz, and the standard deviation of frequencies estimated by the LVDT sensor and the accelerometer was below 0.08 Hz. The developed system was applied to access a vibration stimulation system for the future study. The average acceleration difference of the central and peripheral point of the stimulation system was less than 0.0005 g(1 g=9.8 $m/s^2$), and the standard deviation of the acceleration was below 0.004 g, which shows the usefulness of the wireless vibration measurement system.

A Study on the Effect of Vibration Input toward the Sense of Equilibrium (진동이 평형감각에 미치는 영향에 관한 연구)

  • Jeong S.H.;Piao Y.J.;Lee S.M.;Kwon T.K.;Hong C.U.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.539-542
    • /
    • 2005
  • In this study, we investigated the influence of vibrational stimulation on postural control. To study the effect, the sway of the center of pressure was observed fur two different visual conditions and for three different patterns of vibrational stimulation on plantar area. The two visual conditions were normal condition with visual feedback and blind condition with both eyes closed. The three vibrational stimulations were white noise, constant vibration, and vibration with amplitude modulations (sine curve modulation). The experimental results showed that the sway of the center of pressure distinctively reduced with white noise vibrational stimulation. This result showed that it's possible to use vibrational stimulation for improving the ability of postural control.

  • PDF

Effect of Multi-Channel Vibration Stimulation on Somatosensory Sensibility (다채널 진동자극이 체성감각에 미치는 영향)

  • Bae, Tae-Soo;Kim, Hyung-Jae;Kim, Sol-Bi;Chang, Yun-Hee;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.651-656
    • /
    • 2011
  • Although prosthetic training was received, most of amputees mainly depend on visual feedback to use prostheses, not on cutaneous and proprioceptive sensibility. Our objective of this study was to determine if there are changes in the somatosensory sensibility of amputees compared to non-amputees using multi-channel vibration stimulation system. One transradial amputees and ten non-amputees were involved. To investigate changes of residual somatosensory sensibility at stump, we set up custom-made vibration stimulation system including eight actuators (4 medial and 4 lateral) and GUI-based acquisition system. The results showed that there was similar pattern of subjective response at most of channels among group as stimulation increases. However, amputees' subjective response at channel 8 for 238Hz vibration was more sensitive than that of healthy persons. With respect to channels, response at channel 4 (medial) corresponding region to flexor carpi ulnaris for transradial amputees was most sensitive than other channels. In addition, sensitivity of four medial channels was on average about 0.5 scale than that of four lateral channels. Somatosensory sensibility was amputee, women, and men in sensibility order.

Effect of Wholebody Vibration Stimulation According to Various Frequencies on Ankle Instability, Ankle Range of Motion and Balance Ability in Adult with Chronic Ankle Instability (다양한 주파수에 따른 전신진동자극 훈련이 만성 발목 불안정 성인의 발목 불안정 정도, 관절가동범위, 균형능력에 미치는 영향)

  • Jin, Yeon-Sang;Choi, Yoon-Hee;Shim, Jae-Kwang;Cha, Yong-Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.1
    • /
    • pp.63-72
    • /
    • 2018
  • PURPOSE: The aim of this study was to compare the effect of whole body vibration stimulation on ankle instability, ankle range of motion, and balance ability in adult with chronic ankle instability. METHODS: Forty-five adult with chronic ankle instability were randomly equally allocated the I group (whole body vibration stimulated at 10 Hz), or the II group (20 Hz), or the III group (25 Hz). All the participants (male:13/female: 32, age: $26.64{\pm}3.14$) in this study received whole body vibration therapy for an additional 15 minutes after hot pack and ultrasound three times a week for four weeks. Outcome were measured before and after 4 weeks training. RESULTS: All the three groups showed significant differences in AII and CAIT after intervention (p<.05). I group showed the most significant difference (p<.05). All the three groups also showed significant increase in ankle dorsiflexion and plantar flexion after training (p<.05). I group showed greater increase than the other groups in ankle dorsiflexion (p<.05). The X-axis, Y-axis, and fluctuation speed were significantly decreased in the three groups (p<.05), but there was no significant difference between the three groups after the intervention. CONCLUSION: The findings suggest that the whole body vibration stimulation according to various frequencies is effective for improve ankle instability, ankle range of motion and balance ability in adult with chronic ankle instability. 10 Hz whole body vibration stimulation could help improve ankle instability and ankle range more effectively than other frequencies.

Gender Differences in the Sensitivity and Displeasure Caused by the Vibration Stimuli Applied to the Forearm in Upper Limb Amputees

  • Kim, Sol Bi;Ko, Chang-Yong;Chang, Yun Hee;Kim, Gyoo Suk;Kim, Sin Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.355-361
    • /
    • 2013
  • Objective: The aim of this study is to investigate the gender-differences in vibrotactile responses(sensitivity and displeasure) of residual forearm simulated by vibration stimulation in upper limb(trans-radial) amputees. Background: Several studies have reported that vibration stimulation using the haptic vibrator is one the most effective methods for delivering sensation to an amputees. However, few studies have reported the perception to haptic vibratory stimulus, particularly sensitivity and displeasure. Method: We set up a custom-made vibration stimulation system that included 6 actuators(3 medial parts and 3 lateral parts) and a graphical user interface(GUI)-based acquisition system to investigate changes in residual somatosensory sensibility and displeasure in the forearm of upper limb(trans-radial) amputees. Vibration actuators were attached at the 25%-point on the proximal forearm. Stimulation with 32Hz, 64Hz, or 149Hz of frequency was used for the sensitivity tests and with 32~257Hz of frequency was used for the discomfort experiments. The subjective responses were evaluated on a 10 point scale. Results: The results showed that vibrotactile sensory perception in male amputees were higher than that in female amputees. In male amputees, the response at lateral area of forearm was the most sensitive than medial area; but, female amputees showed similar sensitive areas. Subjects did not experience any discomfort during vibrotactile stimuli. Conclusion: Vibrotactile response in the amputees was dependent on gender as well as area stimulated by vibration. Application: The results might contribute to develop the vibrotactile feedback system for the amputees.

Effects of Wole Body Vibration Training on Transverse Abdominis Muscle Thickness and Sitting Balance in Spastic Cerebral Palsy (전신진동 자극 훈련이 경직형 뇌성마비 아동의 배가로근 두께 및 앉은 자세 균형에 미치는 영향)

  • Hye-Lyeong Yun;Eun-Ju Lee
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.1
    • /
    • pp.72-84
    • /
    • 2023
  • Background: The purpose of this study was to investigate the effect of whole-body vibration stimulation training on the thickness of the transversus abdominis muscle and the balance of sitting posture in children with spastic cerebral palsy. Design: Single-subject design(A-B-A-B). Methods: The subjects of this study were 9 children with spastic cerebral palsy. The study period was 12 weeks in total, and the baseline period and the intervention period were each assigned 3 weeks. Intervention was conducted twice a week for 30 minutes. During the baseline period, trunk stabilization exercise was performed, and during the intervention period, trunk stabilization exercise and whole-body vibration stimulation training were performed. Measurements were carried out at before the experiment, baseline 1, intervention 1, baseline 2, intervention 2 and the total number of measurements was 5 times. Repeated ANOVA was performed to compare the effects of exercise according to the intervention method. Results: The thickness of the transversus abdominis muscle and the balance of the sitting posture were statistically significantly increased compared to the baseline during whole-body vibration stimulation training (p<.05). Conclusion: Therefore, it was confirmed that whole-body vibration stimulation training improved the thickness of the transversus abdominis muscle in children with spastic cerebral palsy and was an effective intervention method for improving sitting posture balance.

Human Sensitivity Responses to Vibrotactile Stimulation on the Hand : Measurement of Differential Thresholds (진동식 촉각 자극에 대한 손의 상대적 민감도 반응)

  • Lee, Seong-Il
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 1999
  • This study investigated human operator's perceptual and psychophysical responses to vibrotactile stimulation on various parts of the hand. Using a small vibrotactile display, the effects of three mechanical parameters consisting vibrotactile stimulations, i.e., vibration frequency, pulse-width modulation duty cycle, and number of contactors, on differential thresholds were examined at five different loci of the hand. It was observed that differential threshold varies with vibration frequency and number of active contactors. Differential sensitivity was the greatest at the vibration frequency of 120 Hz. The differential sensitivity was not found to be affected by loci on the hand. The area of stimulation on the hand was also found to be significant in that the sensitivity increased with the number of active contactors. It should be noted that the conclusions from this study generally correspond to those from the previous study on the absolute sensitivity. which means that tactile sensitivity to vibrotactile stimulations can be controlled with a systematic and consistent passion for emulating normal everyday contact on human hands in teleoperation and virtual reality applications.

  • PDF

Human Sensitivity Responses to Vibrotactile Stimulation on the Hand : Measurement of Absolute Thresholds (진동식 촉각 자극에 대한 손의 절대 민감도 반응)

  • Lee, Seong-Il
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 1998
  • The objective of this study is to investigate hwnan operator's perceptual and psychophysical responses to vibrotactile stimulation on various parts of the hand. Using a small vibrotactile display, five different loci of the hand along with two other mechanical parameters consisting vibrotactile stimulations, which are vibration frequency and number of active contactors, were examined for the effects on absolute thresholds. All test variables were found to have significant effects on thresholds. It was observed that absolute threshold is a function of vibration frequency and number of active contactors. Tactile sensitivity was the greatest at the vibration frequency of 240 Hz, and the fingertip was found to be the most sensitive locus on the hand. The area of stimulation on the hand was also found to be significant in that the sensitivity increased with the number of active contactors. The results of the study generally supported those of other previous studies. It should also be noted, however, that the conclusions from the study should be limited to the absolute sensitivity, not to the suprathreshold intensities of normal everyday contact with the hands.

  • PDF

Adaptation of Sensory Nerve Afferents for Selective Elicitation of Tactile Sensations (감각의 순응을 이용한 선택적 감각유발 가능성)

  • An, Boyoung;Ma, Joohyung;Hwang, Sun Hee;Song, Tongjin;Khang, Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.845-850
    • /
    • 2015
  • This study was designed to investigate the feasibility of utilizing an adaptation for selective elicitation of tactile sensations by means of transcutaneous electrical stimulation. We conducted the first experiment to investigate how the stimulation frequency affected the adaptation. Twenty healthy subjects participated in the second experiment to confirm our proposal that the perception intensity of the low-frequency vibration can be enhanced after a high-frequency adaptation, and vice versa. It was found that (1) a low-frequency stimulation did not adapt the nerve afferents responsible for the high-frequency vibration, (2) a high-frequency stimulation affected the nerve afferents responsible for the low-frequency vibration, but adapted to the pressure sensation more intensely, and (3) more than 62% of the subjects reported a more clear selective sensation after the adaptation had lessened or depressed the unwanted sensation. The observations showed that adaptation of the nerve afferent could be utilized for selective elicitation of tactile sensations.