• Title/Summary/Keyword: Vibration Signals

Search Result 791, Processing Time 0.028 seconds

Design of a New VSS-Adaptive Filter for a Potential Application of Active Noise Control to Intake System (흡기계 능동소음제어를 위한 적응형 필터 알고리즘의 개발)

  • Kim, Eui-Youl;Kim, Byung-Hyun;Kim, Ho-Wuk;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.146-155
    • /
    • 2012
  • The filtered-x LMS(FX-LMS) algorithm has been applied to the active noise control(ANC) system in an acoustic duct. This algorithm is designed based on the FIR(finite impulse response) filter, but it has a slow convergence problem because of a large number of zero coefficients. In order to improve the convergence performance, the step size of the LMS algorithm was modified from fixed to variable. However, this algorithm is still not suitable for the ANC system of a short acoustic duct since the reference signal is affected by the backward acoustic wave propagated from a secondary source. Therefore, the recursive filtered-u LMS algorithm(FU-LMS) based on infinite impulse response(IIR) is developed by considering the backward acoustic propagation. This algorithm, unfortunately, generally has a stability problem. The stability problem was improved by using an error smoothing filter. In this paper, the recursive LMS algorithm with variable step size and smoothing error filter is designed. This recursive LMS algorithm, called FU-VSSLMS algorithm, uses an IIR filter. With fast convergence and good stability, this algorithm is suitable for the ANC system in a short acoustic duct such as the intake system of an automotive. This algorithm is applied to the ANC system of a short acoustic duct. The disturbance signals used as primary noise source are a sinusoidal signal embedded in white noise and the chirp signal of which the instantaneous frequency is variable. Test results demonstrate that the FU-VSSLMS algorithm has superior convergence performance to the FX-LMS algorithm and FX-LMS algorithm. It is successfully applied to the ANC system in a short duct.

A CMOS Interface Circuit with MPPT Control for Vibrational Energy Harvesting (진동에너지 수확을 위한 MPPT 제어 기능을 갖는 CMOS 인터페이스 회로)

  • Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.412-415
    • /
    • 2015
  • This paper presents a MPPT(Maximum Power Point Tracking) control CMOS interface circuit for vibration energy harvesting. The proposed circuit consists of an AC-DC converter, MPPT Controller, DC-DC boost converter and PMU(Power Management Unit). The AC-DC converter rectifies the AC signals from vibration devices(PZT). MPPT controller is employed to harvest the maximum power from the PZT and increase efficiency of overall system. The DC-DC boost converter generates a boosted and regulated output at a predefined level and provides energy to load using PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a schottky diode type DC-DC boost converter is used for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process. The chip area is $950um{\times}920um$.

  • PDF

Applied Sound Frequency Monitoring in the Transformer Oil Using Fiber Optic Sagnac Interferometer (사냑형 간섭계 광섬유 센서를 이용한 변압기유 내에서의 외부 음향 주파수 모니터링)

  • Lee, Jongkil;Lee, Seunghong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2015
  • The fiber optic Sagnac interferometer is well established as a sensor for detection of physical perturbations such as acoustic and vibration. In this paper acoustic signals generated in the cylindrical cavity submerged in transformer oil were measured by the fiber optic sensor array in one Sagnac loop. Two different external sound frequencies, $f_1$ and $f_2$, were applied to the sensor array simultaneously by using piezoelectric with frequency range from 5 kHz to 90 kHz. Based on the experimental results, fiber optic sensor detected harmonic series of applied sound frequency such as $f_1$, $f_2$, $2f_1$, $2f_2$, ${\mid}f_1-f_2{\mid}$, ${\mid}f_1+f_2{\mid}$. Suggested fiber optic sensor array can be applied to monitor physical quantities such as internal sound pressure and vibration due to partial discharge in the real electric transformer system.

Health monitoring of a new hysteretic damper subjected to earthquakes on a shaking table

  • Romo, L.;Benavent-Climent, A.;Morillas, L.;Escolano, D.;Gallego, A.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.485-509
    • /
    • 2015
  • This paper presents the experimental results obtained by applying frequency-domain structural health monitoring techniques to assess the damage suffered on a special type of damper called Web Plastifying Damper (WPD). The WPD is a hysteretic type energy dissipator recently developed for the passive control of structures subjected to earthquakes. It consists of several I-section steel segments connected in parallel. The energy is dissipated through plastic deformations of the web of the I-sections, which constitute the dissipative parts of the damper. WPDs were subjected to successive histories of dynamically-imposed cyclic deformations of increasing magnitude with the shaking table of the University of Granada. To assess the damage to the web of the I-section steel segments after each history of loading, a new damage index called Area Index of Damage (AID) was obtained from simple vibration tests. The vibration signals were acquired by means of piezoelectric sensors attached on the I-sections, and non-parametric statistical methods were applied to calculate AID in terms of changes in frequency response functions. The damage index AID was correlated with another energy-based damage index -ID- which past research has proven to accurately characterize the level of mechanical damage. The ID is rooted in the decomposition of the load-displacement curve experienced by the damper into the so-called skeleton and Bauschinger parts. ID predicts the level of damage and the proximity to failure of the damper accurately, but it requires costly instrumentation. The experiments reported in this paper demonstrate a good correlation between AID and ID in a realistic seismic loading scenario consisting of dynamically applied arbitrary cyclic loads. Based on this correlation, it is possible to estimate ID indirectly from the AID, which calls for much simpler and less expensive instrumentation.

A CMOS Interface Circuit for Vibrational Energy Harvesting (진동에너지 수확을 위한 CMOS 인터페이스 회로)

  • Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.267-270
    • /
    • 2014
  • This paper presents a CMOS interface circuit for vibration energy harvesting. The proposed circuit consists of an AC-DC converter and a DC-DC boost converter. The AC-DC converter rectifies the AC signals from vibration devices(PZT), and the DC-DC boost converter generates a boosted and regulated output at a predefined level. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a schottky diode type DC-DC boost converter is used for a simple control circuitry. A MPPT(Maximum Power Point Tracking) control is also employed to harvest the maximum power from the PZT. The proposed circuit has been designed in a 0.35um CMOS process. The chip area is $530um{\times}325um$. Simulation results shows that the maximum efficiencies of the AC-DC converter and DC-DC boost converter are 97.7% and 89.2%, respectively. The maximum efficiency of the entire system is 87.2%.

  • PDF

Study on Multi Parameter Measurement and Analysis of Distribution High Voltage Cable Connection Part (배전용 특고압 케이블 접속재의 다변수 측정 분석 연구)

  • Song, Ki-Hong;Bae, Young-Chul;Kim, Yi-Gon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.53-60
    • /
    • 2021
  • High voltage CV cables have been widely installed underground due to their convenience and urban aesthetics. However, cable accidents have occurred frequently owing to poor construction and natural degradations. This paper proposes the method to measure the multi parameter measurement for optimum diagnostics of high voltage cable connection parts and verifies its technical usefulness. This measurement is intended to diagnose degradations of cable connection parts by using simultaneous vibration and thermography as well as partial discharge(PD). The experiment in a shielded laboratory was carried out to verify the usefulness of the multi parameter measurement. The experiment defined the degradation of the cable connection part as 12 types, and produced each degradation sample. As a result of experiment, it was possible to check the correlation of vibration signals with regard to progress in some defects. In the case of thermography, the coherence with regard to the progress of some defects was found. We figure that the proposed method would be useful also in the noise environment.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Analysis of the peak particle velocity and the bonding state of shotcrete induced by the tunnel blasting (발파시 터널 숏크리트의 최대입자속도와 부착상태평가 분석)

  • Hong, Eui-Joon;Chang, Seok-Bue;Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.247-255
    • /
    • 2010
  • Bonding strength of shotcrete is a significant influential factor which plays the role of collapse prevention of tunnel crown and of debonding prevention of shotcrete induced by the blasting vibration. Thus, the evaluation of the shotcrete bonding state is one of the core components for shotcrete quality control. In this study, the peak particle velocities induced by blasting were measured on the shotcrete in a tunnel construction site and its effect on the bonding state of shotcrete is investigated. Drilling and blasting technique was used for the excavation of intersection tunnel connecting the main tunnel with the service tunnel. Blast-induced vibrations were monitored at some points of the main tunnel and the service tunnel. The shotcrete bonding state was evaluated by using impact-echo test coupled with the time-frequency domain analysis which is called short-time Fourier transformation. Analysis results of blast-induced vibrations and the time-frequency domain impact-echo signals showed that the blasting condition applied to the excavation of intersection tunnel hardly affects on the tunnel shotcrete bonding state. The general blasting practice in Korea was evaluated to have a minor negative impact on shotcrete quality.

Active Control of Harmonic Signal Based on On-line Fundamental Frequency Tracking Method (실시간 기본주파수 추종방법에 근간한 조화 신호의 능동제어)

  • 김선민;박영진
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1059-1066
    • /
    • 2000
  • In this paper. a new indirect feedback active noise control (ANC) scheme barred on the fundamental frequency estimation is proposed for systems with a harmonic noise. When reference signals necessary for feedforward ANC configuration are difficult to obtain, the conventional ANC algorithms for multi-tonal noise do not measure the reference signals but generate them with the estimated frequencies.$^{(4)}$ However, the beating phenomena, in which certain frequency components of the noise vanish intermittently, may make the adaptive frequency estimation difficult. The confusion in the estimated frequencies due to the beating phenomena makes the generated reference signals worthless. The proposed algorithm consists of two parts. The first part is a reference generator using the fundamental frequency estimation and the second one is the conventional feedforward control. We propose the fundamental frequency estimation algorithm using decision rules. which is insensitive to the beating phenomena. In addition, the proposed fundamental frequency estimation algorithm has good tracking capability and lower variance of frequency estimation error than that of the conventional cascade ANF method.$^{(4)}$ We are also able to control all interested modes of the noise, even which cannot be estimated by the conventional frequency estimation method because of the poor S/N ratio. We verify the performance of the proposed ANC method through simulations for the measured cabin noise of a passenger ship and the measured time-varying engine booming noise of a passenger vehicle.

  • PDF

Highly Reliable Fault Detection and Classification Algorithm for Induction Motors (유도전동기를 위한 고 신뢰성 고장 검출 및 분류 알고리즘 연구)

  • Hwang, Chul-Hee;Kang, Myeong-Su;Jung, Yong-Bum;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.147-156
    • /
    • 2011
  • This paper proposes a 3-stage (preprocessing, feature extraction, and classification) fault detection and classification algorithm for induction motors. In the first stage, a low-pass filter is used to remove noise components in the fault signal. In the second stage, a discrete cosine transform (DCT) and a statistical method are used to extract features of the fault signal. Finally, a back propagation neural network (BPNN) method is applied to classify the fault signal. To evaluate the performance of the proposed algorithm, we used one second long normal/abnormal vibration signals of an induction motor sampled at 8kHz. Experimental results showed that the proposed algorithm achieves about 100% accuracy in fault classification, and it provides 50% improved accuracy when compared to the existing fault detection algorithm using a cross-covariance method. In a real-world data acquisition environment, unnecessary noise components are usually included to the real signal. Thus, we conducted an additional simulation to evaluate how well the proposed algorithm classifies the fault signals in a circumstance where a white Gaussian noise is inserted into the fault signals. The simulation results showed that the proposed algorithm achieves over 98% accuracy in fault classification. Moreover, we developed a testbed system including a TI's DSP (digital signal processor) to implement and verify the functionality of the proposed algorithm.