• 제목/요약/키워드: Vibration Sensors

검색결과 740건 처리시간 0.021초

무선 상태감시 시스템용 진동 기반 에너지 획득 장치 (Vibration-based Energy Harvester for Wireless Condition Monitoring System)

  • 조성원;손종덕;양보석;최병근
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.393-399
    • /
    • 2009
  • Historically, industrial condition monitoring has been performed by costly hard-wired sensors or infrequent checks by maintenance personnel equipped with hand held monitoring equipment. Self- powered wireless condition monitoring systems provides on-line monitoring of critical plant and machinery providing major operating cost benefits. A vibration energy harvester(VEH) is a device that converts kinetic energy occurred by machine vibration into useable electrical energy. Using VEHs to power wireless monitoring systems can yield significant benefits: increased reliability, lower life time costs and no battery disposal issues, etc. This paper proposes the novel prototype design and manufacturing of a VEH that can eliminate the effect by failed batteries.

PPF와 SRF 제어기법을 사용한 지능구조물의 능동진동제어 (Vibration Suppression of Smart Structures Using PPF and SRF Control Techniques)

  • 라완규;곽문규;윤광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.400-406
    • /
    • 1997
  • This paper is concerned with the active vibration control of grid structure by means of piezoceramic actuators and sensors. The control technique used in this paper is based on the positive position feedback(PPF) and the strain rate feedback(SRF) control, which have been successfully used for the vibration control of beam structures. A new control methodology is developed using the PPF and SRF controller of single-input single-output method. The PPF controller is used for the suppression of first bending mode and SRF controller is used for the suppression of higher vibration modes of grid structure. Electric circuits for the realization of control schemes are explained in detail. The control techniques prove its effectiveness by experiments.

  • PDF

모달필터 성능을 고려한 센서의 최적위치 (Sensor Placement in Structural Vibration Control For the Performance of Modal Filter)

  • 황재혁;김준수;백승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.308-315
    • /
    • 1997
  • In this study, the effect of modal filter error on the vibration control characteristics of flexible structures is analyzed for IMSC(Independent Modal Space Control), and optimal sensor placement in the structural vibration control with consideration of performance of modal filter has been studied. An Lyapunov asymptotic stability condition has been derived, which depends on the magnitude of the modal filter errors. The extent of the response deviation of the closed-loop system is also derived and evaluated using operator techniques. A sensor placement technique has also been suggested to maximize the performance of the modal filter. It has been found by a series of simulation that the suggested sensor placement technique is very effective on the determination of the number and placement of sensors of modal filter in the structural vibration control.

  • PDF

회전체 진동 데이터의 AC/DC 성분 데이터 획득 및 분석 장치 (An Acquisition and Analysis Equipment of Dynamic/Static Data on a Rotating Vibration)

  • 이정석;유등열;이철
    • 디지털산업정보학회논문지
    • /
    • 제5권4호
    • /
    • pp.127-137
    • /
    • 2009
  • This paper is proposed that in-output Digital module is acquired a vibration signal of a rotating machinery by Data Acquisition System. The module is designed to get ride of nose through low pass filter on the vibration signal from sensors and set the gain value for being able to sampling AC to DC, and also the sampled data by sampler and the conversed data by DIP/FPGA is supplied to the analyzer for analysis at a software tool. The DIP(Digital Signal Processor) of the Digital input/output Board makes Average voltage, Peak to Peak voltage, RMS(Root Mean Square) and Gap voltage, also FFT(Fast Fourier Transform) for rotating vibration diagnosis.

무선 MEMS 센서를 이용한 저층건물 상시진동계측의 유효성 평가 (The Evaluation of Effectiveness on Horizontal Transient Vibration Measurement of Low-Rise Building Using Wireless MEMS Sensor)

  • 이종호;윤성원
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.57-64
    • /
    • 2017
  • Recently, measuring instruments for SHM of structures had being developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to its absence of triboelectric noise and elimination of the requirement for cumbersome cable. Preliminary studies on the continuous vibration measurement of high-rise buildings using MEMS sensors have been carried out. However, the research on the low-rise buildings with relatively small vibration levels is insufficient. Therefore, in this paper, we used the wireless MEMS sensor to compare and analyze the vibration measurements of three low-rise buildings.

Hybrid vibration-impedance monitoring in prestressed concrete structure with local strand breakage

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.463-477
    • /
    • 2022
  • In this paper, a hybrid vibration-impedance-based damage monitoring approach is experimentally evaluated for prestressed concrete (PSC) structures with local strand breakage. Firstly, the hybrid monitoring scheme is designed to alert damage occurrence from changes in vibration characteristics and to localize strand breakage from changes in impedance signatures. Secondly, a full-scale PSC anchorage is experimented to measure global vibration responses and local impedance responses under a sequence of simulated strand-breakage events. Finally, the measured data are analyzed using the hybrid monitoring framework. The change of structural condition (i.e., damage extent) induced by the local strand breakage is estimated by changes in a few natural frequencies obtained from a few accelerometers in the structure. The damaged strand is locally identified by tomography analysis of impedance features measured via an array of PZT (lead-zirconate-titanate) sensors mounted on the anchorage. Experimental results demonstrate that the strand breakage in the PSC structure can be accurately assessed by using the combined vibration and impedance features.

맥놀이 현상을 이용한 구조물 진동 가진 (Structure Excitation by Using Beating)

  • 최영철;박진호;윤두병
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1028-1033
    • /
    • 2009
  • To detect faults and monitor thinning on a pipe, many people use ultra sonic sensors that are operated in high frequency range. Because there are many modes in high frequency range, it is difficult to find faults and monitor pipe thinning on a structure. If we deal with signals in a low frequency range which include only A0 wave and S0 wave, the information of monitoring and diagnosis can be easily obtained. In this paper, the technique for exciting low frequency range using ultra sonic sensors is proposed. The main idea of the proposed method comes from the beat phenomenon. The beat frequency is equal to the absolute value of the difference in frequency of the two waves. If the beat frequency is tuned by two ultra waves, we can excite A0 mode and S0 mode of structures. To verify the proposed method, we have performed a steel plate and pipe experiments. Experimental results show that two ultra sonic sensors can well excite low frequency range.

독성 나노물질 검출 센서 동향 (Trend of Toxic Nanomaterial Detecting Sensors)

  • 장규환;나성수
    • 한국소음진동공학회논문집
    • /
    • 제24권12호
    • /
    • pp.977-984
    • /
    • 2014
  • Nanomaterial have grown from scientific interest to commercial products and the nanomaterial market has grown 19.1 % each year. As the nanomaterial market size increases, it is expected that nanomaterial production will increase and its contamination of outdoor environmental system will also increase in the form of industrial waste. Since most of nanomaterials are known as biologically non-degradable materials, nanomaterials will accumulate in the environment, and this will increase the potential threats to human health along the food chain. Recent studies have investigated the toxicity effect of nanomaterials due to their size, chemical composition and shape. For the development of nanomaterial while taking human health into consideration, a nanomaterial detecting sensor is required. In this paper, we have observed the trend of nanomaterial detecting sensor of mechanical, electrochemical, optical and kelvin probe force microscopy sensors and we believe that this trend will shed the light on the development of real-life nanomaterial detecting sensors.

Serially multiplexed FBG accelerometer for structural health monitoring of bridges

  • Talebinejad, I.;Fischer, C.;Ansari, F.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.345-355
    • /
    • 2009
  • This article describes the development of a fiber optic accelerometer based on Fiber Bragg Gratings (FBG). The accelerometer utilizes the stiffness of the optical fiber and a lumped mass in the design. Acceleration is measured by the FBG in response to the vibration of the fiber optic mass system. The wavelength shift of FBG is proportional to the change in acceleration, and the gauge factor pertains to the shift in wavelength as a function of acceleration. Low frequency version of the accelerometer was developed for applications in monitoring bridges. The accelerometer was first evaluated in laboratory settings and then employed in a demonstration project for condition assessment of a bridge. Laboratory experiments involved evaluation of the sensitivity and resolution of measurements under a series of low frequency low amplitude conditions. The main feature of this accelerometer is single channel multiplexing capability rendering the system highly practical for application in condition assessment of bridges. This feature of the accelerometer was evaluated by using the system during ambient vibration tests of a bridge. The Frequency Domain Decomposition method was employed to identify the mode shapes and natural frequencies of the bridge. Results were compared with the data acquired from the conventional accelerometers.

고주파 진동 측정을 위한 FBG 센서 시스템 개발 및 복합재 시편의 고유진동수 측정 (Development of FBG sensor System for Measuring the High Frequent Vibration of Structures and the Natural Frequency of Composites)

  • 김대현;구본용;김천곤;홍창선;이인
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.159-162
    • /
    • 2002
  • We introduce a simple optically passive detection scheme for Bragg grating sensors. This detection scheme is based on two cavity lengths in Fabry-Perot read-out interferometers to produce two quadrature phase shifted signals from the Bragg grating sensor. The passive detection technique is demonstrated by the use of Bragg grating sensors in measuring the dynamic vibrations of the composites.

  • PDF