• Title/Summary/Keyword: Vibration Path Analysis

Search Result 201, Processing Time 0.028 seconds

Analytical Analysis of Cogging Torque in Motors of Permanent MagneticType (영구자석을 사용한 모터의 코깅토크에 관한 이론적 해석)

  • Go, Hong-Seok;Kim, Gwang-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1795-1800
    • /
    • 2000
  • One of the principal sources of vibration and noise in permanent magnetic machines is cogging torque, which is induced by interaction between the rotor poles and the stator teeth. For its analysis, using finite element analysis is very time consuming and the calculation of performance factors is extremely sensitive to the discretization. Especially, Maxwell stress tensor method is sensitive to the location of integral path. In this paper, a cogging permeance fuction is defined and replaced by the straight line. And it is assumed that the flux density acting on the stator's tooth side is the euqal to the flux density of the slot area. Using this definition and assumption, analytical calculation of cogging torque is presented and validated. And several reduction method is introduced.

Reduction of Non-Repeatable Runount in a HDD Using Visco-elastic Damping Material (점탄성 댐핑 물질을 이용한 하드 디스크 드라이브의 NRRO저감)

  • 장건희;홍선주;한재혁;김동균
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1234-1239
    • /
    • 1999
  • This research investigates the characteristicsw of NRRO in a 2.5" HDD by using FEM, modal testing and runout analysis, and reduces NRRO using visco-elastic damping material. Most frequency components of NRRO are generated by the defects of ball and rotating race, and they can be determined by the kinematic analysis of ball bearing. It also proposes the novel design of a spindle motor that can reduce NRRO effectively by inserting the visco-elastic damping material to one of the transmission path of NRRO, i.e., where the strain energy is highly concentrate. By this technique, NRRO is reduced by 27%. 27%.

  • PDF

A Simplified Method to Calculate the EMF Characteristics of Multi-disk Axial-gap PM Motor using 2-D & 3-D FEM

  • Kim, Young-Kwan;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • The purpose of this paper is characteristic analysis of multi-disk axial-gap pm motor for turbo compressor. The axial-gap permanent magnet motor has shown a growing interest in high-speed application for its high-efficiency, compact size and low vibration characteristics due to core-less structure. To achieve high-power, the axial-gap PM motor has multi-disk structure of stator and rotor disk. Because of its complicated magnetic flux path, it is not easy to calculate a dynamic characteristics using finite element analysis. In this paper, the simplified 2-D unfolded model to predict EMF characteristic is presented. To verify thesuggested 2-D unfolded model analysis of back-EMF characteristic was calculated and compared 3-D finite element. Finally the proposed method is verified by experimental results and shows good agreement with test results.

INTERIOR ROAD NOISE ANALYSIS WITH PRINCIPAL COMPONENTS

  • Vandenbroeck, D.;Hendricx, W.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.854-859
    • /
    • 1994
  • As powertrain noise is better and better controlled, road noise inputs become more important. The interior road noise of a car is mainly induced by the wheels rolling over the road surface. Each of the four wheels act as an independent and uncorrelated excitation input. To rank the energy transfer form each input to the interior, a Transfer Path Analysis (TPA) needs to be made-which requires operational vibration measurements. However due to the multiple uncorrelated inputs, phase relations vary continuously. It is therefore necessary to separate the operational data into set of "independent phenomena" by means of a Principal Component Analysis (PCA). A TPA can then be carried out for each independent phenomenon. Operational deflection shapes referenced to these principal components share the physical phenomena. The details of the methodology are discussed and a discussion of the results on a car shows that the method gives accurate results for full vehicle testing.e testing.

  • PDF

Modeling and Analysis of Active Mounting System for a Plate-Type Structure (플레이트 형태의 구조물에 대한 능동 마운팅 시스템의 모델링 및 해석)

  • Hong, Dongwoo;Kim, Byeongil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.915-921
    • /
    • 2017
  • Recently, studies to reduce vibration and noise of automobiles have been actively conducted. However, previous studies did not concentrate on the optimization of the mount system with passive or active mounts. This study analytically studies an active mounting system with three active structural paths between source and receiver and the feasibility has been verified. Active mounting system has a coupled structure of piezoelectric stack actuators and passive mounts. A dynamic model of the whole system is prepared and the control force and phase of the stack actuators in each path are determined to target full isolation of each path. Its performance on vibration attenuation is investigated and based on it, optimized combinations of passive and active paths for the best attenuation are presented.

A Study on the Development of Image Processing Measurement System on the Structural Analysis by Optical Non-contact Measurement (광학적 비접촉 측정에 의한 구조물 해석의 화상처리 계측 시스템 개발에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.78-83
    • /
    • 1999
  • This study discusses a non-contact optical technique, electronic speckle pattern interformetry(ESPI), that is well suited for in-plane and out-of-plane deformation measurement. However, the existing ESPI methods that are based on dual-exposure, real-time and time-average method have difficulties for accurate measurement of structure, due to irregular intensity and shake of phase. Therefore, phase shifting method has been proposed in order to solve this problem. About the method, the path of reference light in interferometry is shifted and added to least square fitting method to make the improvement in distinction and precision. This proposed method is applied to measure in -plane displacement that is compared with the previous method. Also, Used as specimen AS4/PE따 [30/=30/90]s was analyzed by ESPI based on real-time to determine the characteristics of vibration under no-load and tension. These results are quantitatively compared with those of FEM analysis inmode shapes.

  • PDF

Micro-Structure Measurement and Imaging Based on Digital Holography

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kee, Chang-Doo;Akhter, Naseem
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.257-260
    • /
    • 2010
  • Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated.

Optimal Stiffness Design of Self-Piercing Riveting's C-Frame for Multimaterial Joining (다종소재 접합을 위한 SPR(Self-Piercing Riveting)용 C-프레임 강성 최적설계)

  • Shin, Chang-Yeul;Lee, Jae-Jin;Mun, Ji-Hun;Kwon, Soon-Deok;Yang, Min-Seok;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.76-84
    • /
    • 2021
  • In this study, an optimal stiffness model of the C-frame, which was supporting the mold and tool load, was proposed to obtain quality self-piercing riveting (SPR) joining. First, the load path acting on the C-frame structure was identified using topology optimization. Then, a final suggested model was proposed based on the load path results. Stiffness and strength analyses were performed for a rivet pressing force of 7.3 [t] to compare the design performance of the final proposed model with that of the initial model. Moreover, to examine the reliability of continuous and repeated processes, vibration analysis was performed and the dynamic stiffness of the final proposed model was reviewed. Additionally, fatigue analysis was performed to ascertain the fatigue characteristics due to simple repetitive loading. Finally, stiffness test was performed for the final proposed model to verify the analysis results. The obtained results differed from the analysis result by 2.9%. Consequently, the performance of the final proposed model was superior to that of the initial model with respect to not only the SPR fastening quality but also the reliability of continuous and repetitive processes.

A Development of an Intake RCV System for the Low Noise Turbo Engine (터보엔진의 저소음 흡기 RCV 시스템 개발)

  • Lee, Jong-Kyu;Kim, Jae-Heon;Kang, Sang-Kyu;Kang, Koo-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.734-741
    • /
    • 2010
  • In this paper, an intake RCV system for low noise turbo engine was developed through optimization process of a geometric path of compressor housing and an open rate of recirculation valve. At first, the critical customer requirement from voice of customer was defined and quality function deployment of an intake RCV system was executed. And then, the renovative concept design using pugh matrix method was selected as final concept for satisfaction of requirement. Simultaneously, system analysis was carried by function diagram and fishbone diagram. Next, control factors and levels for the optimal design were performed. And, the optimal design of an intake RCV system was studied using design of experiment. Conclusively, we achieved not only cancellation tip-out noise at the driving condition but also improvement of NVH commodity through optimization process of an intake RCV system, which is optimal configuration of compressor housing and recirculation valve.

Development of Crack Detecting Method at Steam Turbine Blade Root Finger using Ultrasonic Test (초음파탐상 검사를 이용한 증기터빈 블레이드 루트 휭거 균열 탐지기법 개발)

  • Yun, Wan-No;Kim, Jun-Sung;Kang, Myung-Soo;Kim, Duk-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.738-744
    • /
    • 2011
  • The reliability of blade root fixing section is required to endure the centrifugal force and vibration stress for the last stage blade of steam turbine in thermal power plant. Most of the domestic steam turbine last stage blades have finger type roots. The finger type blade is very complex, so the inspection had been performed only on the exposed fixing pin cross-section area due to the difficulty of inspection. But the centrifugal force and vibration stress are also applied at the blade root finger and the crack generates, so the inspection method for finger section is necessary. For the inspection of root finger, inspection points were decided by simulating ultra-sonic path with 3D modeling, curve-shape probe and fixing jig were invented, and the characteristics analysis method of ultrasonic reflection signal and defect signal disposition method were invented. This invented method was actually executed at site and prevented the blade liberation failure by detecting the cracks at the fingers. Also, the same type blades of the other turbines were inspected periodically and the reliability of the turbine increased.