• 제목/요약/키워드: Vibration Parameters

검색결과 2,632건 처리시간 0.03초

향상된 유전알고리듬을 이용한 유체마운트의 최적화 (Optimization of Engine Mount Using an Enhanced Genetic Algorithm)

  • 안영공;김영찬;양보석
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.935-942
    • /
    • 2002
  • When designing fluid mounts, design parameters can be varied in order to obtain a desired notch frequency and notch depth. The notch frequency is a function of the mount parameters and is typically selected by the designer to occur at the vibration disturbance frequency. Since the process of choosing these parameters can involve some trial and error, it seems to be a great application for obtaining optimal performance of the mount. Many combinations of parameters are possible to give us the desired notch frequency, but the question is which combination provides the lowest depth. Therefore. an automatic optimal technique is needed to optimize the performance of the fluid mount. In this study. the enhanced genetic algorithm (EGA) is applied to minimizing transmissibility of a fluid mount at the desired notch frequency, and at the notch and resonant frequencies. The EGA is modified genetic algorithm to search global and local optimal solutions of multi-modal function optimization. Furthermore. to reduce the searching time as compare to conventional genetic algorithm and Increase the precision of the solutions, the modified simplex method is combined with the algorithm. The results show that the performance of the optimized mount by using the hybrid algorithm is better than that of the conventional fluid mount.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

실험적 방법을 통한 전동식 지게차의 진동저감에 대한 연구 (The Study about Vibration Reduction of the Electronic Forklift on Experiment at Methods)

  • 정진태;박철준;임형빈;문창기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.577-581
    • /
    • 2006
  • In this study, it is presented a vibration cause of an electronic forklift by a variable excitation through experimental methods. It is presented a vibration influence by a variable excitation and established an FE model about structure vibration. It is used an FE model and presented parameters causing the vibration. It is presented a mechanism causing the vibration of the electronic forklift and proposed a vibration reduction of the electronic forklift.

  • PDF

Analysis of thermal and damage effects over structural modal parameters

  • Ortiz Morales, Fabricio A.;Cury, Alexandre A.
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.43-51
    • /
    • 2018
  • Structural modal parameters i.e. natural frequencies, damping ratios and mode shapes are dynamic features obtained either by measuring the vibration responses of a structure or by means of finite elements models. Over the past two decades, modal parameters have been used to detect damage in structures by observing its variations over time. However, such variations can also be caused by environmental factors such as humidity, wind and, more importantly, temperature. In so doing, the use of modal parameters as damage indicators can be seriously compromised if these effects are not properly tackled. Many researchers around the world have found numerous methods to mitigate the influence of such environmental factors from modal parameters and many advanced damage indicators have been developed and proposed to improve the reliability of structural health monitoring. In this paper, several vibration tests are performed on a simply supported steel beam subjected to different damage scenarios and temperature conditions, aiming to describe the variation in modal parameters due to temperature changes. Moreover, four statistical methodologies are proposed to identify damage. Results show a slightly linear decrease in the modal parameters due to temperature increase, although it is not possible to establish an empirical equation to describe this tendency.

고속 정면밀링가공을 위한 진동 파라미터에 관한 연구 (A Study on the Vibration Parameters for High Speed Face Milling Machining)

  • 장성민;이승일
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4149-4155
    • /
    • 2013
  • 더 빠른 절삭속도와 이송속도를 위한 고속가공은 표면품위와 재료제거율의 증가를 초래한다. 이 논문은 고속가공을 위한 정면밀링커터를 사용한 가공에서 획득된 진동특성에 관한 절삭조건의 영향을 연구하였다. 이 논문에서, 직교배열 테이블에 기초한 다구찌 실험계획법은 고속 정면밀링커터를 사용한 진동특성을 연구하기 위해 적용되었다. 실험조건은 직교배열 $L_{27}(3^{13})$ 을 사용하였다. 실험의 계획과 분석은 S/N비(신호 대 잡음비)와 분산분석을 이용하여 진동에 관한 절삭조건의 영향을 연구하기 위해 수행되었다. 절삭 파라미터 즉 이송속도, 챔퍼길이, 절삭속도 그리고 절삭깊이는 진동 특성치를 고려하여 최적화 되었다.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

실내공간의 잔향시간과 음향변수 측정방법 (Measurement of the Reverberation Time of Rooms with Reference to Other Acoustical Parameters)

  • 오양기;주진수;정광용;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.392-396
    • /
    • 2001
  • Revision of KS, Korean Standards, is currently actively discussed. It is just the time for a new world class standards under the new system with WTO, World Trade Organization. This paper is a part of “Researchs on the Standards in the Building Acoustic Field”, as one of KS revision projects. The aim of this study is to define the requirements for measuring the reverberation time and other major room acoustical parameters.

  • PDF

입력 매개변수에 따른 시뮬레이션 오차에 관한 연구 (About the simulation error which follows in input parameters research)

  • 김태훈;김동욱;박광진;공정철;배동명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.308-314
    • /
    • 2011
  • The research which sees, the parameters inputs and acoustic measurement result in simulation error most on a large scale concreteness of 3D models which affect number of effective surface. Therefore DATA of above the comparison which will listen, analyzed and investigated.

  • PDF

화물수송용 철도차량 현가장치의 설계변수와 진동성능에 관한 연구 (A study on the design parameters and vibration performance of suspension device for freight car)

  • 함영삼;오택열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.507-512
    • /
    • 2001
  • As needs for substitution of excessive road-oriented transport by the railroad increase, we proposed the guideline for development of the high speed freight car up to 150km/h through analyzing the critical speed of welded-type freight car employed and investigating the improvement in its maintenance. This study, the proper design parameters of conical rubber spring was determined to meet the vibration performance.

  • PDF

Dynamic behavior of cracked ceramic reinforced aluminum composite beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.387-393
    • /
    • 2022
  • This paper presents the vibration analysis of cracked ceramic-reinforced aluminum composite beams by using a method based on changes in modal strain energy. The crack is considered to be straight. The effective properties of composite materials of the beams are estimated through Mori-Tanaka micromechanical model. Comparison study and numerical simulations with various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. Results demonstrate the pronounced effects of these parameters on intact and cracked ceramic aluminum beams.