• 제목/요약/키워드: Vibration Control Algorithm

검색결과 638건 처리시간 0.03초

중대형 왕복동 기관의 진동제어를 위한 능동형 역기진기 제어 알고리즘 개발 (Development of Active Vibration Control Algorithms for the Compensator of Medium-to-large Size Reciprocating Engines)

  • 김대현;고병준;홍석윤;이영제
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.348-356
    • /
    • 2003
  • Active vibration control algorithms for the compensator and proto-type testing system have been developed for the suppression of vibrations from the reciprocating engines. At first, the developed algorithm determines optimal control vibration phases by detecting vibration responses of the engine without and with compensator, and then performs the continuous optimal control functions by tracking the change of the vibration frequency and phase. This algorithm is comparatively simple. robust for the external excitations and needless of supplementary operation since the control process is serially carried out. To validate the performance of compensator and algorithm, testing system including excitation device are constructed and tested, and the reductions of vibration levels are observed over than 80 % of the uncontrolled levels at various frequency ranges.

전동식 동흡진기와 Filtered-X LMS알고리즘을 이용한 차량의 능동진동제어 실험 (Active Vibration Control of Vehicle by Active Linear Actuator and Filtered-x LMS Algorithm)

  • 이한동;곽문규;김정훈;송윤철;박운환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.357-363
    • /
    • 2009
  • This paper deals with the Filtered-x Least Mean Square algorithm for a active vibration control in vehicle vibration reduction. Before applying the proposed FxLMS algorithm to automobile, the performance of the FxLMS algorithm is simulated using sensor data of a vehicle. The FxLMS algorithm requires that reference signal be a representation of disturbance signal and the plant model be incorporated into the computation path. To this end, The system identification is carried out to obtain the plant model based on the measurement results. A tachometer signal is used as reference signal. The FxLMS control algorithm is first tested using simulation and applied to a vehicle. Experimental results show that the proposed control algorithm can reduce vibration level in a short period of time.

  • PDF

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF

다채널 제어알고리듬을 이용한 음향 가진된 밀폐계 평판의 능동진동제어 (Active Vibration Control of Acoustically Loaded Flexible Plate Enclosure Using Multi-Channel Control Algorithm)

  • 홍진석;박수홍;김흥섭;오재응;정진태
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1390-1397
    • /
    • 2000
  • This paper presents the multi-channel active vibration control of a flexible plate of the acoustically loaded enclosure. The flexible plate was excited acoustically with sinusoidal and white noise input. The control was performed by two piezo ceramic actuators and two accelerometers. The experimental results were compared with the single channel control results. In the case of white noise input, 20 dB of vibration reduction was achieved below 300Hz frequency range. The experimental results demonstrate that multi-channel filtered-x LMS algorithm is effective than single-channel filtered-x LMS algorithm in active vibration control of plate.

가속도 피이드백 제어기를 이용한 세탁기의 능동진동제어 (Active Vibration Control of Washing Machine by Acceleration Feedback Controller)

  • 김승기;곽문규;양동호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.28-31
    • /
    • 2014
  • This paper is concerned with the active vibration control of washing machine. To this end, a new control algorithm utilizing an acceleration signal as a sensor signal is newly developed based on the principle of a dynamic absorber. The resulting control algorithm was implemented digitally on the DSP board. The accelerometer and the active linear actuator were used as sensor and actuator for the active vibration control of washing machine. Experimental results show that the proposed control algorithm can be effectively used for a controller which uses an accelerometer.

  • PDF

Multiple model switching adaptive control for vibration control of cantilever beam with varying load using MFC actuators and sensors

  • Gao, Zhiyuan;Huang, Jiaqi;Miao, Zhonghua;Zhu, Xiaojin
    • Smart Structures and Systems
    • /
    • 제25권5호
    • /
    • pp.559-567
    • /
    • 2020
  • Vibration at the tip of various flexible manipulators may affect their operation accuracy and work efficiency. To suppress such vibrations, the feasibility of using MFC actuators and sensors is investigated in this paper. Considering the convergence of the famous filtered-x least mean square (FXLMS) algorithm could not be guaranteed while it is employed for vibration suppression of plants with varying secondary path, this paper proposes a new multiple model switching adaptive control algorithm to implement the real time active vibration suppression tests with a new multiple switching strategy. The new switching strategy is based on a cost function with reconstructed error signal and disturbance signal instead of the error signal from the error sensor. And from a robustness perspective, a new variable step-size sign algorithm (VSSA) based FXLMS algorithm is proposed to improve the convergence rate. A cantilever beam with varying tip mass is employed as flexible manipulator model. MFC layers are attached on both sides of it as sensors and actuators. A co-simulation platform was built using ADAMS and MATLAB to test the feasibility of the proposed algorithms. And an experimental platform was constructed to verify the effectiveness of MFC actuators and sensors and the real-time vibration control performance. Simulation and experiment results show that the proposed FXLMS algorithm based multiple model adaptive control approach has good convergence performance under varying load conditions for the flexible cantilever beam, and the proposed FX-VSSA-LMS algorithm based multiple model adaptive control algorithm has the best vibration suppression performance.

입력크기 변화에 따른 외팔보의 능동진동제어 경향 (Performance tendency of active vibration control on a cantilever beam with variation of input amplitude)

  • 권오철;양인형;윤지현;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.305-344
    • /
    • 2008
  • This paper presents the active control of flexible beam vibration. The beam was excited by a steady-state point force by mini shaker and the control was performed by mini shaker. To perform active control, least-mean-square (LMS) algorithm was used because it can easily obtain the complex transfer function in real-time. So an adaptive controller based on Filtered-X LMS algorithm was used and the controller was defined by minimizing the square of the response at a location of error sensor. In order to fine out performance tendency, input amplitude was changed in several cases and active vibration control was performed.

  • PDF

가속도가 포함된 순간최적제어 알고리듬을 이용한 구조물 진동의 능동제어 (Active Control of Structural Vibration Using An Instantaneous Control Algorithm including Acceleration Feedback)

  • 문석준;정태영
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.215-224
    • /
    • 1996
  • Active vibration control is generally used to reduce vibration level by the actuators based on measured signal. Dynamic properties of a structure can be easily modified by the active vibration control, so that the vibration level may be effectively reduced to the magnitude below the allowable limit over a wide frequency rangs. In this paper, an instantaneous optimal control algorithm including acceleration feedback is presented for the active vibration control of large structures considering facts that the acceleration response can be easily measured, but the displacement and velocity response are obtained by numerically integrating the measured acceleration response with some errors. The adverse effect of the time delay is overcomed by taking into account the dynamic characteristics of an actuator and filters in the design of controller. Performance test is carried out using a hydraulic active mass driver on a test structure$(L{\times}W{\times}H;=;1200mm{\times}800mm{\times}1600mm, about;500kg)$ supported by four columns under base excitations. It is confirmed that the vibration level of the test structure are reduced to about 1/6 near resonance.

  • PDF

적응형 뱅뱅 제어 알고리듬을 이용한 다자유도계의 진동 제어에 관한 연구 (A study on the vibration control of a MDOF system using the adaptive bang-bang control algorithm)

  • 임채욱;정태영;문석준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.239-245
    • /
    • 2000
  • Adaptive bang-bang control algorithm has been proposed by the authors to improve peak response reduction of building structures under unexpected large earthquake. At the previous research, control performance of the proposed algorithm was experimentally confirmed by using a I-DOF test structure. As an extended research, performance tests on a multi-DOF model structure have been conducted to prove the usefulness of the adaptive bang-bang control algorithm using a hydraulic AMD. It is confirmed that the proposed adaptive bang-bang algorithm is applicable to suppress the vibration of multi-DOF structures subject to severe external excitations.

  • PDF

능동 엔진 마운트 제어용 Active Linear Actuator를 이용한 외팔보 능동진동제어 실험 (Active Vibration Control Experiment of Cantilever Using Active Linear Actuator for Active Engine Mount)

  • 양동호;곽문규;김정훈;박운환;심호석
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1176-1182
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.