• Title/Summary/Keyword: Vibration Attenuation

Search Result 259, Processing Time 0.023 seconds

Experimental Noise Separation of a Diesel Engine (디젤 엔진소음 (1) ; 실험적 소음 분리기법)

  • 강종민;안기환;박해성;조우흠
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.757-764
    • /
    • 1997
  • The well-developed noise separatrion techniques are applied to the V8 RG8 Diesel engine for the engine noise reduction of a commercial vehicle. For various loads and engine RPM's, the contribution of the combustion oriented noise and the mechanically induced noise was calculated under the small variations of the injection timing. For the given Diesel engine the mechanical noise is dominant for low rpm, and the contribution of the combustion noise becomes greater as the rpm increases. The combustion noise is dominant around 2kHz range or under 50% loading condition.

  • PDF

$H_{\infty}$ control of 2-mass system using partial state feedback and resonance ratio control (부분적인 상태궤환과 공진비제어를 이용한 2관성계의 $H_{\infty}$제어)

  • Kim, Jin-Soo;Lee, Hoon-Goo;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.53-57
    • /
    • 2001
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem, the two degrees of freedom $H_{\infty}$ controller was designed. But it is difficult to realize that controller. In this paper, $H_{\infty}$ control of 2-mass system using partial state feedback and resonance ratio control is proposed. Proposed controller has simple structure but satisfies the attenuation of disturbances and vibrations.

  • PDF

Fractional wave propagation in radially vibrating non-classical cylinder

  • Fadodun, Odunayo O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.465-471
    • /
    • 2017
  • This work derives a generalized time fractional differential equation governing wave propagation in a radially vibrating non-classical cylindrical medium. The cylinder is made of a transversely isotropic hyperelastic John's material which obeys frequency-dependent power law attenuation. Employing the definition of the conformable fractional derivative, the solution of the obtained generalized time fractional wave equation is expressed in terms of product of Bessel functions in spatial and temporal variables; and the resulting wave is characterized by the presence of peakons, the appearance of which fade in density as the order of fractional derivative approaches 2. It is obtained that the transversely isotropic structure of the material of the cylinder increases the wave speed and introduces an additional term in the wave equation. Further, it is observed that the law relating the non-zero components of the Cauchy stress tensor in the cylinder under consideration generalizes the hypothesis of plane strain in classical elasticity theory. This study reinforces the view that fractional derivative is suitable for modeling anomalous wave propagation in media.

Study on Adopting Genetic Algorithm for Design Single Expansion Chamber and Resonator Module (단순확장관과 공명기 모듈 설계를 위한 유전자 알고리즘의 적용에 관한 연구)

  • 황상문;황성호;정의봉;김봉준;정융호
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • With the increased requirement for automobile noise, a design fo mufflers with higher performances becomes more important in recent days. For a design of some mufflers, it must satisfy both minimizing back pressure and maximizing sound attenuation in broad range of frequecny. Even for a simple Helmholtz resonator, an important element in a muffler, a resonator design with accurate resonant frequency is difficult if one want to consider standing waves within the cavity. In this paper, the genetic algorithm, one of the optimization technique with high capability of global fittest solution and robust convergence, is applied to the design process of mufflers. Results show that the genetic algorithm can be successfully and efficiently used to find the fittest model for both mufflers and Helmoltz resonators.

  • PDF

Pressure Ripple Reduction of Hydraulic Pump-Motor in HST (HST용 유압폄프.모터의 압력맥동 저감 특성)

    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.117-123
    • /
    • 2003
  • This paper deals with pressure ripple and noise reduction characteristics for a hydrostatic transmission(HST) consisting of a variable axial piston pump connected in an open loop to a fixed displacement axial piston motor. Pressure ripples in HST is major source of vibration, which can lead to fatigue failure of components and cause noise. In order to reduce the pressure ripple, an annular tube type hydraulic filter proposes to absorb pressure ripples with the high frequencies components to achieve better noise attenuation in HST. The basic principle tube is applied to propagation of pressure wave, reflection, absorption in cross section of discontinuity and resonance in the hydraulic pipeline. It is experimently confirmed that a hydraulic filter is absorbed to be about 30∼40dB of pressure ripple with high frequencies. These results will assist in modeling and design of noise reduction in hydraulic control systems, and here, should provide a means of designing a quieter HST.

  • PDF

Performance Evaluation of Laminated-Tempered Glass as a Component of Noise Barrier on Metro Railway Elevated Bridge Against Train Induced Vibration and Wind Load (지하철 고가교 접합강화유리 방음판의 열차진동 및 풍하중에 대한 성능평가)

  • Kim, Suk-Su;Lee, Ho-Beom;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.30-41
    • /
    • 2017
  • Types of noise barrier installed for noise attenuation are largely divided into noise-absorbing format and noise-proofing format. In these days, installation of transparent noise barrier is general trend to solve problems that hinder sunshine and landscape. Some kinds of transparent boards are used to one of components in noise barriers, but in some cases, less transparency and worse pollution due to yellowing phenomena, and severe material deformation are to harm the urban aesthetics Therefore laminated-tempered glass board in that yellowing phenomena does not occur can be replaced as a transparent one to secure those shortcomings. In this paper, the structural safety against train induced vibration and the resistibility to wind load are analyzed for laminated-tempered glass system as a component of noise barrier installed on Metro railway elevated bridges. Also the appropriateness is evaluated through flexural bending performance test, compressive strength test, modulus of elasticity tests, and impact test for the system or the glass material itself. All of these processes are intended to present the deployment of logic to evaluate the adequacy for the system.

A Study on Safety Blasting Design with Blast Vibration Analysis Urban Area (도심지 미진동 제어 발파에서 진동분석을 통한 안전발파설계에 관한 연구)

  • 안명석;박종남;배상근
    • Explosives and Blasting
    • /
    • v.17 no.2
    • /
    • pp.36-44
    • /
    • 1999
  • A study was made on the design of the prediction model concerning blasting vibration in a constraction site, Namgu, Daegu City. The geology in this area consists of hornfels of shale and mud underlain by quartize, of which the main strike of the geological structure is NW direction. Measurements were carried out on the top of the wall concrete water storage tank, which is burried in the ground earth. The attenuation due to the vertical wall of the concrete structure may be experted because of spherical divergency at the bottom corner of the wall by the Huygens principle. For design of blasting prediction model, thus among scaled distance(SD) may be preferable to use in the regression model, since they represents most likely the average ground condition. Judging from the regression results, the cube root method may be more suitable for this area. The SD values for the maximum allowable vibration velocity of 0.5 cm/s, in this area are 22.5, 28.0 and 30.6 for the significance level of 50%, 95% and 99%, respectively.

  • PDF

Experimental Comparison on Vibration Attenuation Performances of the Piezoelectric Mount in Same Geometric Constraints with the Rubber Mount (고무마운트와 동일한 형상 조건을 갖는 압전마운트의 진동저감 성능에 대한 실험적 비교 고찰)

  • Han, Young-Min
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.166-171
    • /
    • 2021
  • An active mount is devised in same geometric constraints with a conventional rubber mount. The proposed mount features the piezoelectric actuator which can be used to reduce the vibration at marine vessels or automotive vehicles. As a first step, a passive rubber mount is adopted and its dynamic characteristics are experimentally evaluated. Based on the geometry of the rubber mount, a rubber element for the active mount is manufactured and integrated with two piezostacks in series, in which the piezostack is operated as an inertial type of actuator. A conventional PID controller featured by the simple and easy implementation, is then designed to attenuate the non-resonant high frequency vibration transmitted from the base excitation. Finally, the control performances of a proposed active mount are evaluated in the wide frequency range and compared with those of the conventional rubber mount.

Characteristics Analysis of a Pseudoelastic SMA Mesh Washer Gear for Jitter Attenuation of Stepper-actuated Gimbal-type Antennas (스텝모터 구동형 짐벌 안테나의 미소진동저감을 위한 초탄성 형상기억합금 메쉬 와셔 기어의 기본특성 분석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.46-58
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna is widely used to transmit bulk image data from high-resolution observation satellites. However, undesirable microvibrations induced by driving the antenna should be attenuated, because they are a main cause of image-quality degradation of the observation satellite. In this study, a pseudoelastic memory alloy (SMA) gear was proposed to attenuate the microvibrations by driving the antenna in an azimuth angle. In addition, the proposed gear can overcome the limitations of the conventional titanium blade gear, which is not still enough and is vulnerable to plastic deformations under excessive torque. To investigate the basic characteristics of the proposed SMA mesh washer gear, a static load test was performed on the thickness of the SMA mesh washer and the rotation of the gear. Moreover, The microvibration measurement test demonstrated that the SMA mesh washer gear proposed in this study is effective for microvibration attenuation.

A Study on the Plastic deformation Absorption Characteristics of Aluminum-Polyethylene Composite Structure Sprinkler Pipe (알루미늄 합성수지 복합 구조 스프링클러 파이프의 변위 흡수 특성 연구)

  • Kim, Jun-Gon;Kim, Kwang-Beom;Noh, Sung-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.426-433
    • /
    • 2019
  • After an earthquake, fire and gas explosions are more likely to cause more casualties in cities with many apartment buildings and large complex buildings. In order to prevent this, seismic design is necessary for the fire protection sprinkler system. However, most systems currently use stainless-steel pipes, although synthetic resin pipes are used in some special places. These materials are susceptible to vibration and earthquakes. This study evaluated the displacement absorption flexibility of polyethylene (PE) and aluminum (Al) multi-layered composite pipes to increase the seismic performance in a vibration environment and during earthquakes. The seismic performance was compared with that of a stainless-steel and PE pipes. The seismic characteristics can be measured by measuring the amount and extent of vibration transmitted by the sprinkler pipe. This method can be used to judge the seismic characteristics to attenuate the vibration during an earthquake. The seismic characteristics of the pipe were verified by comparing the logarithmic attenuation rate to the initial response displacement of the vibration generated by the transverse vibration measurement method.