• Title/Summary/Keyword: Vibration Amplitude

Search Result 1,037, Processing Time 0.029 seconds

Measurement Method of the Vibration Mode Shapes Using Electro-Optic Holographic Interferometry (전자 광학적 훌로그래픽 간섭법을 이용한 진동물체의 모드형태 계측법)

  • Choi, Jang-Seob;Kang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.564-574
    • /
    • 1996
  • This paper describes as Electronic Speckle Pattern Interferometry system which has been designed for measuring vibration patterns and quantitative measurement of vibration amplitude fields by using the time average method on a object. Visbility of fringe patterns is more improved by using the phase stepping and frame average method to reduce speckle and electric noise. And a bias vibration is introduced into the reference beam to shift the $\frac{2}{0}$ fringes so that fringe shift algorithms can be used to determine vibration amplitude. The experimental results are compared to those of the FFT analyzer and the FEM model analysis.

Measurement of Large-amplitude and Low-frequency Vibrations of Structures Using the Image Processing Method (영상 처리 방법을 이용한 구조물의 큰 변위 저주파 진동 계측)

  • Kim, Ki-Young;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.329-333
    • /
    • 2005
  • This paper is concerned with the measurement of low-frequency vibrations of structures using the image processing method. To measure the vibrations visually, the measurement system consists of a camera, an image grabber board, and a computer. The specific target installed on the structure is used to calculate the vibration of structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the size of image. In this paper, we propose the methodology for the vibration measurement using the image processing method. The method enables us to measure the displacement directly without any contact. The current resolution of the vibration measurement is limited to sub centimeter scale. However, the frequency bandwidth and resolution can be enhanced by a high-speed and high-resolution image processing system.

Performance tendency of active vibration control on a cantilever beam with variation of input amplitude (입력크기 변화에 따른 외팔보의 능동진동제어 경향)

  • Kwon, O-Cheol;Yang, In-Hyung;Yoon, Ji-Hyun;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.305-344
    • /
    • 2008
  • This paper presents the active control of flexible beam vibration. The beam was excited by a steady-state point force by mini shaker and the control was performed by mini shaker. To perform active control, least-mean-square (LMS) algorithm was used because it can easily obtain the complex transfer function in real-time. So an adaptive controller based on Filtered-X LMS algorithm was used and the controller was defined by minimizing the square of the response at a location of error sensor. In order to fine out performance tendency, input amplitude was changed in several cases and active vibration control was performed.

  • PDF

Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers

  • Singh, Vijay K.;Panda, Subrata K.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.853-872
    • /
    • 2015
  • Numerical analysis of large amplitude free vibration behaviour of laminated composite spherical shell panel embedded with the piezoelectric layer is presented in this article. For the investigation purpose, a general nonlinear mathematical model has been developed using higher order shear deformation mid-plane kinematics and Green-Lagrange nonlinearity. In addition, all the nonlinear higher order terms are included in the present mathematical model to achieve any general case. The nonlinear governing equation of freely vibrated shell panel is obtained using Hamilton's principle and discretised using isoparametric finite element steps. The desired nonlinear solutions are computed numerically through a direct iterative method. The validity of present nonlinear model has been checked by comparing the responses to those available published literature. In order to examine the efficacy and applicability of the present developed model, few numerical examples are solved for different geometrical parameters (fibre orientation, thickness ratio, aspect ratio, curvature ratio, support conditions and amplitude ratio) with and/or without piezo embedded layers and discussed in details.

Vibration Measurement Using a Fringe Pattern in Reflective Monochromatic Interferometry

  • Kim, Minsu;Yoon, Do-Young;Pahk, Heuijae
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.494-502
    • /
    • 2015
  • This paper introduces methods to measure vibration using a fringe pattern. These methods use variations of a fringe pattern in reflective monochromatic interferometry, without additional components. With the proposed methods we measured the vibrations of four waveform with amplitude 100 nm. When the vibrational amplitude is greater than a quarter wavelength of the light employed, however, the measured results are distorted due to ambiguity. Thus we propose advanced methods to solve this problem, and also measure the vibrations of two waveformswith an amplitude of $1{\mu}m$. To verify the performance of the proposed methods, we compare the results to those from an accelerometer. Multifrequency vibrations of 1, 5, 10, and 20 Hz are measured by both techniques, and the results compared in the frequency domain.

Amplitude dependency of damping of tall structures by the random decrement technique

  • Xu, An;Xie, Zhuangning;Gu, Ming;Wu, Jiurong
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.159-182
    • /
    • 2015
  • This study focuses on the amplitude dependency of damping of tall structures by the random decrement technique (RDT). Many researchers have adopted RDT to establish the amplitude dependency of damping ratios in super-tall buildings under strong wind loads. In this study, a series of simulated examples were analyzed to examine the reliability of this method. Results show that damping ratios increase as vibration amplitudes increase in several cases; however, the damping ratios in the simulated signals were preset as constants. This finding reveals that this method and the derived amplitude-dependent damping ratio characteristics are unreliable. Moreover, this method would obviously yield misleading results if the simulated signals contain Gaussian white noise. Full-scale measurements on a super-tall building were conducted during four typhoons, and the recorded data were analyzed to observe the amplitude dependency of damping ratio. Relatively wide scatter is observed in the resulting damping ratios, and the damping ratios do not appear to have an obvious nonlinear relationship with vibration amplitude. Numerical simulation and field measurement results indicate that the widely-used method for establishing the amplitude-dependent damping characteristics of super-tall buildings and the conclusions derived from it might be questionable at the least. More field-measured data must be collected under strong wind loads, and the damping characteristics of super-tall buildings should be investigated further.

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

Frequency analysis of the tonic vibration reflex of the hand flexor muscles

  • 박희석
    • Proceedings of the ESK Conference
    • /
    • 1994.04a
    • /
    • pp.49-51
    • /
    • 1994
  • The aims of this study were first to determine the influence of vibration displacement amplitude $(200{\mu}m, 300{\mu}m peak-to-peak)$ at selected frequencies (40-200Hz) on a commonly observed but often undesired motor response elicited bylocal vibratory stimulation, the Tonic Vibration Reflex (TVR). Second, to determine the degree of synchronization of motor unit (MU) activity with vibratory stimuli. Vibration was applied to the distal tendons of the hand flexor muscles. Changes in root- mean-square electromyographic (EMG) activity of the finger and wrist flexor muscles were analyzed both as a function of their initial contraction level (0%, 10%, 20% of the maximal voluntarycontraction: MVC) and as a function of the vibration parameters. The results indicate that the TVR increased with the initial muscle contraction up to 10% MVC: The TVR increased with vibration frequency up to 100-150 Hz and decreases beyond; A significant increase of the TVR with vibration displacement amplitude was observed only for the wrist flexor muscle; MU synchronization at vibration frequency (VF) was found more often in the low frequency range $(f{\leq}100 Hz)$ and tended todecrease beyond; In the high frequency range $(f{\geq}120 Hz)$, MU activity at subharmonic frequency was predominant; The "cut-off" frequency of the synchronization with VF was neither affected by the vibration displacement amplitude nor initial muscle contraction level. The surface EMG turned out to be a useful means to analyze MU synchronization since it is noninvasive, and it can be easily used for analysis of different muscle contraction levels, while single MU technique might have some difficulties at high muscle contraction levels. Furthermore, these results indicate that high frequencyvibration (f>150 Hz) tends to induce less muscle/tendon stress and MU synchronization. Such remarks are of importance for the design of hand-held vibrating tools.ing tools.

  • PDF

A Study on the Characteristics of an Amplitude Proportional Friction Damper (변위비례식 마찰댐퍼의 특성에 관한 연구)

  • 박동훈;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.717-720
    • /
    • 2002
  • An Amplitude Proportional Friction Damper (APFD) system is considered in order to improve the stick-slip characteristics of Coulomb friction damper. The frictional force is proportional to the amplitude in APFD system and the system is non-linear as is Coulomb damper system. The free vibration analysis on an 1-DOF system has conducted to demonstrate the characteristics of the APFD system and the results show that the APFD system has similar damping characteristics to the viscous damper system. It is concluded that the APFD system may become a cost effective substitution for the viscous damper and it also has certain advantages over Coulomb damper system since the APFD system can be designed to work with no stick-slip.

  • PDF

Study on the Development of Train Transverse Vibrations data Recording System with GPS (GPS연계 열차진동감지장치 개발에 관한 연구)

  • Cho, Man-Jae;Jeon, Seong-Joon;Shon, Kang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1689-1694
    • /
    • 2011
  • There are increasing customer's needs for safe operation and comfort of trains for the passengers as trains are getting fast and developed with advanced components. To meet the needs we developed the system which is able to prevent possible risk elements by transverse vibrations during the train operation. System records the amplitude data of trains vibration and location data from GPS antenna in real time. The system is composed of 5 different functioning modules as following GCPU, GGWD, GIFD, GAID and GPSD. GAID module is detecting amplitude value of vibration which is sensed by bogie hunting sensor's. GFID gets location information where vibration data is detected with GPS Antenna. Once those data is prepared, GCPU testify it's amplitude and decides whether it send those data. When it sends those recorded data, those data are sent to control unit by MVB communication. we expect that this information will help operation and maintenance engineers improve the safety train services. This paper explains train transverse Vibrations data recording system and its major functions which can measure the amplitude of trains's data during the operation and introduces the configuration for the system setup.

  • PDF