Frequency analysis of the tonic vibration reflex of the hand flexor muscles

  • 박희석 (홍익대학교 산업공학과)
  • Published : 1994.04.01

Abstract

The aims of this study were first to determine the influence of vibration displacement amplitude $(200{\mu}m, 300{\mu}m peak-to-peak)$ at selected frequencies (40-200Hz) on a commonly observed but often undesired motor response elicited bylocal vibratory stimulation, the Tonic Vibration Reflex (TVR). Second, to determine the degree of synchronization of motor unit (MU) activity with vibratory stimuli. Vibration was applied to the distal tendons of the hand flexor muscles. Changes in root- mean-square electromyographic (EMG) activity of the finger and wrist flexor muscles were analyzed both as a function of their initial contraction level (0%, 10%, 20% of the maximal voluntarycontraction: MVC) and as a function of the vibration parameters. The results indicate that the TVR increased with the initial muscle contraction up to 10% MVC: The TVR increased with vibration frequency up to 100-150 Hz and decreases beyond; A significant increase of the TVR with vibration displacement amplitude was observed only for the wrist flexor muscle; MU synchronization at vibration frequency (VF) was found more often in the low frequency range $(f{\leq}100 Hz)$ and tended todecrease beyond; In the high frequency range $(f{\geq}120 Hz)$, MU activity at subharmonic frequency was predominant; The "cut-off" frequency of the synchronization with VF was neither affected by the vibration displacement amplitude nor initial muscle contraction level. The surface EMG turned out to be a useful means to analyze MU synchronization since it is noninvasive, and it can be easily used for analysis of different muscle contraction levels, while single MU technique might have some difficulties at high muscle contraction levels. Furthermore, these results indicate that high frequencyvibration (f>150 Hz) tends to induce less muscle/tendon stress and MU synchronization. Such remarks are of importance for the design of hand-held vibrating tools.ing tools.

Keywords