• Title/Summary/Keyword: Vibration Acceleration level

Search Result 172, Processing Time 0.035 seconds

Investigation on Human Perception Level under Walking and Heel Drop Vibrations Using Shaking Table Test (진동대 실험을 통한 보행진동과 뒷꿈치 충격진동의 인지수준 비교)

  • 한상환;이상욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.186-193
    • /
    • 2003
  • Floor vibrations in residence and office buildings are typically induced by heel drop and walking movement of occupants. The criteria of most vibration provisions have been developed based on the vibration caused by heel drop impact rather than walking. There may be considerable differences between the vibration characteristics induced by walking and heel drop. The effect of walking vibration was not well reflected on current provisions. In this paper, shaking table test was performed to investigate the human perception level against the vibrations due to walking and heel drop. This study attempts to compare the human Perception level of two different vibration sources. Also, this study investigates the effect of damping on a Perception level under heel drop and walking vibration.

Vibration Analysis of Super-Precision Linear Motors (초정밀 선형 모터의 진동 분석)

  • Seol, Jin-Soo;Lee, Woo-Young;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.840-845
    • /
    • 2004
  • Development of the linear motors is recently required to control a high-speed and high-resolution in the high-integrated and speed process industry. This paper presents vibration analyses as well as measurement standards of the newly developed linear motors through analyzing the vibration characteristics of the advanced products. Vibration experiments are conducted for identifying vibration level during operation. They are also included in the modal test to analyze dynamic characteristics. Analytic data using Finite Element Method (FEM) are compared with the results of the modal. The FEM and experiments make it possible to understand these characteristics. Further, through computer simulation for the behavior of moving part to be vibration source, the best acceleration pattern of moving part movement can be verified to achieve effective moving part positioning and reduce the vibration due to moving part movement.

  • PDF

지형오차와 치형수정을 고려한 헬리컬치차의 물림진동

  • 정태형;명재형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.803-806
    • /
    • 1995
  • The vibration and nosic of gears is causeed by manufacting error,alignment error in assembly, and thr meshing stiffness of gears which changes periodically as the meshing of teeth process. On a pair of power transmission helical gears with profile error, the relation between the characteristics of gear vibration and the profile error type have been investigated by simulating the vibrational acceleration level and calculating the natural frequency. The results show that the profile error decrease the natural frequency by reducing the tool stiffness and that the concave error type increase the vibrationsl level. And this paper describes the effect of the tip relief on the vibrational acceleration level which a pair of helical gears with concave error generates.

  • PDF

Development of Vibration Absorption Device for the Transportation-Trailer System(I) - Characteristics for the existing vehicle - (수송 트레일러의 충격 흡수 장치 개발(I) - 보급기종에 대한 특성 및 진단 -)

  • 이홍주;홍종호;이성범;김성엽
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • This study was aimed to identify how the main body vibration of power tiller will be transmitted to the trailer, and to find out the basic information for demage reducing method of agricultural products during transportation. The vertical vibration acceleration level was measured at 6 positions, i.e. engine, hitch, seal and three parts of trailer (front middle, and rear) for the not driving but at the engine speeds of 1,000rpm and driving at 0.35m/s. The results of this research could be summarized as follows; 1. For not driving, the accumulated acceleration level up to 120Hz was 50% of total accelerations at engine part and those were 28~41% at other parts. Those up to 40Hz were 20~30% at engine and hitch part and 2~8% at trailer part. And those up to 20Hz were 13~20% at engine and hitch part and 1~4% at trailer part 2. For the driving with 0.35m/s at paved road, the average vertical accelerations were in the range of 0.005~0.058m/s$^2$. The lowest value of 0.005m/s$^2$ was showed at engine part and the value of 0.031-0.058m/s$^2$ was showed at trailer part. 3. For the driving with 0.35m/s, the accumulated value of average vertical accelerations showed the lowest value at engine parts md showed 5 times value of engine part at trailer part especially highest value at middle part of trailer. 4. For the driving with 0.35m/s, the accumulated acceleration level up to 120Hz was 75% of total accelerations at engine part and those were 20~42% at other parts. Ant those up to 20Hz and 40Hz were 24~26% at engine part and 0.1~0.6% at trailer part.

Diagnosis and recovering on spatially distributed acceleration using consensus data fusion

  • Lu, Wei;Teng, Jun;Zhu, Yanhuang
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.271-290
    • /
    • 2013
  • The acceleration information is significant for the structural health monitoring, which is the basic measurement to identify structural dynamic characteristics and structural vibration. The efficiency of the accelerometer is subsequently important for the structural health monitoring. In this paper, the distance measure matrix and the support level matrix are constructed firstly and the synthesized support level and the fusion method are given subsequently. Furthermore, the synthesized support level can be served as the determination for diagnosis on accelerometers, while the consensus data fusion method can be used to recover the acceleration information in frequency domain. The acceleration acquisition measurements from the accelerometers located on the real structure National Aquatics Center are used to be the basic simulation data here. By calculating two groups of accelerometers, the validation and stability of diagnosis and recovering on acceleration based on the data fusion are proofed in the paper.

Dynamic analysis for High-speed train using acceleration value (고속철도차량의 가속도 값을 이용한 차량 동특성 분석)

  • Kim, Young-Mo;Choi, Sung-Hun;Kim, Ki-Hwan;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.169-174
    • /
    • 2007
  • Adopting articulated bogie system, the HSR350x and KTX have similar physical mechanical characteristic, but they show different dynamic characteristics due to different position of suspensions and those physical properties. The low level vibration frequency which effects on the ride comfort of passengers and the high level vibration frequency which is related to noise of vehicle have been measured by accelerometers mounted on Wheel sets, Bogies and Car bodies to analysis the dynamic characteristics of the High-Speed Trains. The KTX number 36 is utilized to measure the lateral and vertical acceleration value of car body, and total measurement system of HSR350x have been used to acquire acceleration data. The sampling frequency of data is 500Hz generally, but the Car body at TT2 of HSR350 has 1000Hz exceptionally.

  • PDF

Measurements and Analysis of Truck Transport Vibration Characteristics on the Gyungbu and 88 Highway (경부고속도로와 88고속도로에 대한 트럭수송시의 진동 특성 측정 및 분석 연구)

  • Park, In-Sik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Measurements of accelerometer levels transmitted from the floor in commercials truck shipments were carried out transportation of 300 Kg-load from Gyungbu Highway(Waegouan-Seoul) to 88 Highway(Gwangju-Daegu). Different characteristics were observed the values measured the vibration levels with directions in the two Highway's as a function of road condition and truck speed. The results showed that the vibration levels of the Gyungbu Highway is much higher than those of the 88 Highway. A following analysis on the obtained values was used to get the acceleration spectral density (ASD) and power spectral density (PSD). For the entire transit route, the results showed that the level of vibration to vertical direction was significant effects for damaging the products carried compared to other directions such as longitudinal and transverse. This paper provides an updated history of measured characteristics of vibration levels for highways using mainly in domestic area.

  • PDF

Case_study of detecting loose part by acceleration signal (가속도 충격파형을 이용한 기기의 결함 위치분석 및 진단사례)

  • Yoo, Mu-Sang;Park, Seung-Do;Park, Hyeon-Cheol;Choi, Nak-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.463-468
    • /
    • 2007
  • The abnormal sound of generator frame is analyzed by a acceleration signal. The spike-like time signal is major characteristics of impacting force. The distributional map of vibration level is one of visualization method. With map, noise source was easily detected. After de_assembly of generator, loose part of internal component is the source of impact force by mechanical movement of stator inherently. In contact condition of part with clearance, the level of impact signal is different at each revolution and impact signal did not happens periodically.

  • PDF

Optimum Transport Systems of Agricultural Products(II) -Vibration characteristics of the transporting traliler- (농산물 수송 최적화 시스템 (II) -트레일러의 진동 분포 특성-)

  • 홍종호;이홍주
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.315-322
    • /
    • 2001
  • Agricultural products can be damaged due to the vibration of transporting trailer on the off-road. So, this study was conducted to identify the vibration characteristics of the agricultural products transporting trailer by measuring the vertical acceleration according to positions on the trailer loaded with agricultural products. The results of this study can be summarized as follows: 1. At non-operating state of engine, the larger vertical acceleration was occurred at rear side compared with front side in the case of 4.5Hz of vibration frequency. But, in the case of 53.5Hz of frequency, the maximum vertical acceleration at front side of trailer was higher than value at rear side. So, the maximum acceleration at front side of the trailer was increased with the increase in frequency. 2. At operating state of engine, the maximum vertical acceleration at front side of the trailer was increased with the increase in frequency. 2 At operating state of engine, the maximum vertical acceleration delivered through the hitch from the engine was occurred at front side of the trailer as $3.0\times10^{-3}m/s^2$, in the case of 8.75Hz of frequency. But, in the case of 102.5Hz of high frequency, the maximum vertical acceleration was occurred at rear side of the trailer. 3. When the power tiller loaded with pear of 325kg was travelling on the artificial uneven road of 3cm height, the maximum acceleration was occurred at rear side of the trailer as $4.7\times10^{-3}m/s^2$at 3.75Hz of frequency. But, that was occurred at diagonal of the trailer 43.5Hz and 91.25Hz, which meant that there was rolling and pitching on the trailer. 4. At operating state of engine, the mean acceleration of the trailer delivered through the hitch according to the increase in frequencies was showed the maximum value at range of 40-90Hz. At rear side of traiㅣer, the maximum value was occurred at about 40Hz, and that was reduced according to the increase in frequencies and diminished at about 100Hz. 5. When the power tiller loaded with pear of 32.5kg was travelling on the artificial uneven road of 3cm height, the mean acceleration by the increase in frequencies was showed lower level at rear side than front side of the trailer. This was opposite configuration to the Hinsch’s results tested with air-conditioned truck. This means that the shorter length of the trailer, the more effect of engine vibration is transferred to the front side of trailer.

  • PDF

Vibration Measurement and Analysis During Fruits Distribution for Optimum Packaging Design (적정 포장설계를 위한 과실의 유통 중 진동의 계측 및 분석)

  • Kim, Ghi-Seok;Jung, Hyun-Mo;Kim, Ki-Bok;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • The freight vehicle is mostly used to transport the fruit. Shock and impact generated by the freight vehicle may give serious damage to fruits hence to reduce the fruits damage, the optimum packaging design during transportation by vehicle is required. In order to design the packaging system for fruit transportation optimally, the comprehension of characteristic for vibration and shock acting on vehicles under various road conditions and loading methods is required. This research was performed to analyze the shock characteristics, acceleration level and power spectral density (PSD) of the fruit transportation vehicles under several travel roads and positions. The vibration signal was measured and analyzed at the transportation vehicle operating on the road of three different surface conditions. The maximum acceleration was measured at the rear-end of the vehicle, and the acceleration in the direction of up-and-down (z-axis) was much greater than those in the directions of back-and-forth (x-axis) or right-and-left (y-axis). The peak acceleration in the direction of up-and-down (z-axis) at the vehicle driving on the expressway, the local road paved with concrete, and unpaved local road were 5.3621 G, 8.232 G, and 14.162 G respectively. PSD at 2.44 Hz showed maximum value at all road conditions. The maximum values of PSD on the expressway, a local road paved with concrete, and unpaved local road were 0.0075222 $G^2/Hz$, 0.058655 $G^2/Hz$, and 0.24598 $G^2/Hz$ respectively. The value of PSD decreased with an increase of the vibration frequency of the transportation vehicle. In most cases, the vibration frequency was below 20 Hz during transportation.