• Title/Summary/Keyword: Viable cell number

Search Result 274, Processing Time 0.025 seconds

Lactobacillus bulgaricus Fermentation Characteristics of Yogurt with added Buckwheat Sprout (Lactobacillus bulgaricus를 이용한 메밀싹 첨가 요구르트의 발효특성)

  • Kang, Ha-Ni;Kim, Chul-Jai
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.1
    • /
    • pp.90-95
    • /
    • 2009
  • The principal objective of this study was to investigate the influence of buckwheat sprouts on the acid production and growth of lactic acid bacteria in to which 5 and 10%(w/v) buckwheat sprouts was added, followed by fermentation with Lactobacillus bulgaricus. In yogurt to which 5 and 10% buckwheat sprouts was added, pH was lower and titratable acidity was higher than those of the control. It was also noted significant changes in the number of viable cell counts with differing amounts of added buckwheat sprouts until 12 hours. When the yogurt samples were stored for 12 days at $4^{\circ}C$, the pH and titratable acidity of the yogurt to which 5 and 10% buckwheat sprouts was added were maintained at lower and higher than control levels, respectively. The highest number of viable cell counts was found in the yogurt to which 5% buckwheat sprouts was added. Rutin content was reduced via lactic acid fermentation, but quercetin content increased significantly in the yogurt with added buckwheat sprouts. It may be that the glycosidic bonds connected to rutin were hydrolyzed during fermentation by lactic acid bacteria. The total phenol compound content of the yogurt samples also increased after fermentation. The antioxidative activity of yogurt to which 10% buckwheat sprouts was added was shown to have a 60.95% free radical scavenging effect, which was the highest among all yogurt samples evaluated.

Development of Probiotic Products and Challenges (프로바이오틱 제품 개발 동향과 과제)

  • Seo, Jae-Gu;Lee, Gwa-Soo;Kim, Jin-Eung;Chung, Myung-Jun
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2010
  • Probiotics beneficially affect the health of the host via various mechanisms in the intestine. Recent developments in probiotic products have mainly been made to maximize probiotic effects in human. In this regard, probiotic products containing doubly coated or encapsulated cells, multi-species probiotics, or high viable cell number (1010 viable cells/gram or more) have been developed and are already available in the market. Until now, the majority of probiotics contain live cells but little attention has been paid to other alternative products such as heat-killed cell or bacteriocin-containing ones, which could have broad applications due to advantages over live cell-based probiotics, such as safety and stability. In addition, genetically engineered lactic acid bacteria could be of great importance in the field of alimentary health if they are carefully designed for biological safety. Although a number of probiotics are marketed by claiming health benefits, regulations for health claims will be more stringent. Therefore sufficient scientific and clinical evidences supporting the safety and efficacy of the potential probiotic strain will be required by the regulatory authority for a health claim, which thus may have a huge impact on the future probiotic market.

Development of Cell Entrapment Technology for the Improvement of Bifidobacterium Viability (Bifidobacterium의 생존력 증대를 위한 세포포집기술개발)

  • Park, Hui-Gyeong;Bae, Gi-Seong;Heo, Tae-Ryeon
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.389-395
    • /
    • 1999
  • Bifidobcterium spp. can provide human being with several beneficial physiological. Therefor, there has been a considerable interest in products Bifidobcterium spp. dietary supplements or as starter cultures for probiotic products that may assint in the improvement of health on the human. But indusrial applications have been limited because Bifidobcterium spp. are sensitive to acidic pH due to organic acid produced by themselves and various conditions. The objective of this study was to establish new method for improvement of Bifidobcterium viability by entrapment im calcium alginate beads. We have a plan to select the most suitable polymer through the comparison with acid tolerance oxygen tolerance and theological properties of polymer. Increase of the viable number of Bifidobcterium induced increasing acid tolerance and oxygen tolernce trough the development of entrapment technique. The 4%, 3030mm diameter) sodium alginate beads led to the best survivability under acid condition. Especially, addition of 6% mannitol, 6% glycerol or 6% sorbitol to the sodium alginate helped a beneficial effect on viability against acid, bile salt, hydrogen peroxide and cold strage. The number of viability of entrapeede cells by retreatment was 96 fold higher than non-entrapeed cells after 5 hours of storage under pH 3 acidic condition. These experimental data clearly demonstrate that a whole cell immobilization by entrapment in calcium alginate beads is an important survival mechanism enable to withstand environmental stresses as the acidic condition, hydrogen peroxide toxicity and frozen state.

  • PDF

Determination of human breast cancer cells viability by near infrared spectroscopy

  • Isoda, Hiroko;Emura, Koji;Tsenkova, Roumiana;Maekawa, Takaaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4105-4105
    • /
    • 2001
  • Near infrared spectroscopy (NIRS) was employed to qualify and quantify on survival, the injury rate and apoptosis of the human breast cancer cell line MCF-7 cells. MCF-7 cells were cultured in RPMI medium supplemented with 10% FCS in a 95% air and 5% CO2 atmosphere at 37$^{\circ}C$. For the viable cells preparation, cells were de-touched by 0.1% of trypsin treatment and washed with RPMI supplemented with 10% FCS medium by centrifugation at 1000 rpm for 3min. For the dead cells preparation, cells were de-touched by a cell scraper. The cells were counted by a hemacytometer, and the viability was estimated by the exclusion method with frypan blue dye. Each viable and dead cells were suspended in PBS (phosphate bufferred saline) or milk at the cell density desired. For the quantitative determination of cell death by measuring the LDH (lactate dehydrogenase) activity liberated from cells with cell membrane injuries, LDH-Cytotoxic Test Wako (Wako, Pure Pharmaceutical Co. Ltd., Japan) was used. We found that NIRS measurement of MCF-7 cells at the density range could evaluate and monitor the different characteristics of living cells and dead cells. The spectral analysis was performed in two wavelength ranges and with 1,4, 10 mm pathlength. Different spectral data pretreatment and chemometrics methods were used. We applied SIMCA classificator on spectral data of living and dead cells and obtained good accuracy when identifying each class. Bigger variation in the spectra of living cells with different concentrations was observed when compared to the same concentrations of dead cells. PLS was used to measure the number of cells in PBS. The best model for measurement of dead cells, as well as living cells, was developed when raw spectra in the 600-1098 nm region and 4 mm pathlength were used. Smoothing and second derivative spectral data pretreatment gave worst results. The analysis of PLS loading explained this result with the scatter effect found in the raw spectra and increased with the number of cells. Calibration for cell count in the 1100-2500 nm region showed to be very inaccurate.

  • PDF

EFFECT OF SURFACE ROUGHNESS OF ACRYLIC RESIN ON THE ADHESION OF BACTERIA (Acrylic resin 표면의 거칠기에 따른 세균부착 비교)

  • Kim, Young-Yi;Vang, Mong-Sook;Park, Ha-Ok;Oh, Jong-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.373-385
    • /
    • 2004
  • Statement of problem: The microbial adhesion on the surface of materials used in prosthodontics and restorative dentistry significantly influences microbial infection. Purpose: The purpose of this study was to evaluate the effect of how the degree of surface roughness of acrlyic resin affect the adhesion of bacteria. Material and methods: Resins were finished with $50{\mu}m$ and $250{\mu}m$ aluminium oxide particles by using sandblaster, by using stone point, and high polished with $Opa^{(R)}$ and Lace $motor^{(R)}$. The surface of acrylic resin attached by bacteria was directly touched on the surface of BHI agar, which was incubated. Bacteria colonies formed on BHI agar were counted in accordance with the degree of the surface roughness. Results: 1. The viable cell number of Streptococcus mutans increased on the acrylic resins incubated in BHI broth than in PBS. 2. The viable cell number of Streptococcus mutans increased on the acrylic resins incubated without agitation than with agitation, washed three times than six times, and incubated in broth added with 5% sucrose than without sucrose. 3. When Streptococcus mutans incubated in BHI broth, the number of Streptococcus mutans colonies formed on BHI agar was the largest on the acrylic resins finished with $250{\mu}m$ aluminium oxide particle using sandblaster. But when incubated in BHI broth containing sucrose, the number of colonies formed on that was the largest on the acrylic resins high polished using $Opal^{(R)}$ and Lace $motor^{(R)}$. 4. When Streptococcus sanguis was incubated in BHI broth with or without sucrose, the number of Streptococcus mutans colonies formed on BHI agar was the largest on the acrylic resins finished with $250{\mu}m$ aluminium oxide particle using sandblaster. 5. When Actinomyces viscosus was incubated in BHI broth with or without sucrose, the number of Streptococcus mutans colonies formed on BHI agar was the largest on the acrylic resins high polished using $Opal^{(R)}$ and Lace $motor^{(R)}$. Conclusion: These results indicated that when acrylic resins attached by bacteria were touched on the surface of BHI agar, the number of bacterial colonies formed on the agar was dependent on the bacterial species. Also, the result of this study was showed that increase in the surface roughness and the addition of sucrose increased retention of microbial cells.

Influence of Agitation Speed on Cell Growth in the Aerobic Yeast Fermentation of Pulverized Liquid Food Wastes for Probiotic Feed Production (남은 음식물로 호기적 액상효모발효를 이용한 생균사료를 생산할 때 생균수에 대한 교반 속도의 영향)

  • Yu, Sung-Jin;Yu, Seung-Yeung;Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.99-104
    • /
    • 2001
  • The influence of agitation speed on the yeast growth was investigated in the production of probiotic feed from pulverized liquified food wastes by aerobic fermentation. A yeast Kluyvermyces marxianus was selected through a preliminary screening. The yeast was cultured by 2liter jar fermenter. in 10% solid(w/v) substrate of liquified food waste at $35^{\circ}C$ with each different agitation speed of 500, 900 and 1200 rpm. For the acceleration of enzyme excretion mixed culture with Aspergillus oryzae was also attempted and the results were compared to those of single culture. As results the viable cell number was increased by increasing agitation speed. But it showed highest value in 900rpm and then decreased in 1200rpm. The mixed culture increased amylase activity and growth rate, but did not seem to enhance the highest viable cell count in the final fermentation stage.

  • PDF

Viable Bacterial Cell Patterning Using a Pulsed Jet Electrospray System

  • Chong, Eui-seok;Hwang, Gi Byung;Kim, Kyoungtae;Lee, Im-Soon;Han, Song Hee;Kim, Hyung Joo;Jung, Heehoon;Kim, Sung-Jin;Jung, Hyo Il;Lee, Byung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.381-385
    • /
    • 2015
  • In the present study, drop-on-demand two-dimensional patterning of unstained and stained bacterial cells on untreated clean wafers was newly conducted using an electrospray pulsed jet. We produced various spotted patterns of the cells on a silicon wafer by varying the experimental conditions, such as the frequency, flow rate, and translational speed of the electrospray system in a two-dimensional manner. Specifically, the electrospray's pulsed jet of cell solutions produced alphabetical patterns consisting of spots with a diameter of approximately $10{\mu}m$, each of which contained a single or a small number of viable bacteria. We tested the viability of the patterned cells using two visualization methods. This pattering technique is newly tested here and it has the potential to be applied in a variety of cell biology experiments.

Physiochemical Characteristics of Lactobacillus acidophilus KH-l Isolated from the Feces of a Breast-Fed Infant

  • Yu, K.H.;Kang, S.N.;Park, S.Y.
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2005
  • Three lactobacillus strains, two from infant feces, and one from cow's milk, were selected among 172 isolates, from multiple sources, for further study based on the antimicrobial activities against six strains of pathogenic bacteria and identified as Lactobacillus acidophilus. The strains revealed a wide scope of spectrum against pathogenic bacteria. Viable Lactobacillus acidophilus KH-l cell counts at pH 2.0 were slightly decreased to $1.42\times10^7$ CFU/mL from $4.18\times10^7$ CFU/mL, while remaining at $3.42\times10^7$ CFU/mL at pH 4.0 with the survival rate of $33.97\%\;and\;81.82\%$, respectively. At the concentration of $0.1\%$ oxgall, L acidophilus KH-l kept growing up to $3.12\times10^7$ CFU/mL with a mean growth rate constant (k) of 0.25, and cell number was slightly decreased to $1.21\times10^7$ CFU/mL (k=0.19) with $0.3\%$ oxgall, but remained at $7.6\times10^6$ CFU/mL (k=0.17) with $0.5\%$ oxgall. L. acidophilus KH-l had a $D_{60}$ value of 7.14, with viable cell numbers $1.4\times10^5$ CFU/mL after heat treatment at $60^{\circ}C$ for 30 minutes. Stability of L acidophilus KH-l at $-20^{\circ}C$ was significantly higher, when the strain was cultivated under the optimum growth temperature $(54.41\%\;and\;54.35\%)$ than at the temperature $(13.53\%)$.

High cell density cultivation of Bacillus sp.

  • Lee, Baek-Seok;Chae, Won-Bok;Jo, Jae-Hui;Choe, Gi-Hyeon;Kim, Yeong-Beom;Choe, Seong-Won;Kim, Eun-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.290-293
    • /
    • 2001
  • In this study, media optimization by statistically designed experiments stimulated an increase in cell growth of Bacillus sp. during batch cultivation. Plackett-Surman design method selected 3 components among 7 components of production medium. Box-Behnken design method calculated the optimum concentration of selected components by Plackett-Surman design. In the optimized medium, viable cell number increased 2 times. Addition of antifoam effected the cell growth depending on the type of antifoam Vegetable oil, are a carbon source and an antifoam. increased cell growth and controlled foaming

  • PDF

Culturing the Uncultured in the Ocean

  • Cho, Jang-Cheon
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.28-32
    • /
    • 2005
  • Epifluorescence microscopy and direct viable counting methods have shown that only 0.01-0.1% of all the microbial cells from marine environments form colonies on standard agar plates. To culture novel marine microorganisms, high throughput culturing (HTC) techniques were developed to isolate cells in very low nutrient media. This approaches was designed to address microbial metabolic precesses that occur at natural substrate concentrations and cell densities, which are typically about three orders of magnitude less than in common laboratory media. Approximately 5000 cultures of pelagic marine bacteria were examined over the course of 3 years. Up to 14% of cells from coastal seawater were cultured using this method, a number that is 1400 to 140-fold higher than obtained by traditional microbiological culturing techniques. Among the cultured organisms are many unique phylogenetic lineages that have been named as new phyla (7), orders (2, 5, 12), families (3), and genera (1, 4, 6). Over 90% of the cells recovered by this method do not replicate in standard agar plating, the most common method of microbial cell cultivation.

  • PDF