• Title/Summary/Keyword: Vessel segmentation

Search Result 50, Processing Time 0.023 seconds

A Fast Lower Extremity Vessel Segmentation Method for Large CT Data Sets Using 3-Dimensional Seeded Region Growing and Branch Classification

  • Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.348-354
    • /
    • 2008
  • Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes. Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image data sets of lower extremities.

Region-based Vessel Segmentation Using Level Set Framework

  • Yu Gang;Lin Pan;Li Peng;Bian Zhengzhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.660-667
    • /
    • 2006
  • This paper presents a novel region-based snake method for vessel segmentation. According to geometric shape analysis of the vessel structure with different scale, an efficient statistical estimation of vessel branches is introduced into the energy objective function, which applies not only the vessel intensity information, but also geometric information of line-like structure in the image. The defined energy function is minimized using the gradient descent method and a new region-based speed function is obtained, which is more accurate to the vessel structure and not sensitive to the initial condition. The narrow band algorithm in the level set framework implements the proposed method, the solution of which is steady. The segmentation experiments are shown on several images. Compared with other geometric active contour models, the proposed method is more efficient and robust.

Coronary Vessel Segmentation by Coarse-to-Fine Strategy using Otsu Algorithm and Decimation-Free Directional Filter Bank

  • Trinh, Tan Dat;Tran, Thieu Bao;Thuy, Le Nhi Lam;Shimizu, Ikuko;Kim, Jin Young;Bao, Pham The
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.557-570
    • /
    • 2019
  • In this study, a novel hierarchical approach is investigated to extract coronary vessel from X-ray angiogram. First, we propose to combine Decimation-free Directional Filter Bank (DDFB) and Homographic Filtering (HF) in order to enhance X-ray coronary angiographic image for segmentation purposes. Because the blood vessel ensures that blood flows in only one direction on vessel branch, the DDFB filter is suitable to be used to enhance the vessels at different orientations and radius. In the combination with HF filter, our method can simultaneously normalize the brightness across the image and increases contrast. Next, a coarse-to-fine strategy for iterative segmentation based on Otsu algorithm is applied to extract the main coronary vessels in different sizes. Furthermore, we also propose a new approach to segment very small vessels. Specifically, based on information of the main extracted vessels, we introduce a new method to extract junctions on the vascular tree and level of nodes on the tree. Then, the window based segmentation is applied to locate and extract the small vessels. Experimental results on our coronary X-ray angiography dataset demonstrate that the proposed approach can outperform standard method and attain the accuracy of 71.34%.

Automatic Segmentation of Vertebral Arteries in Head and Neck CT Angiography Images

  • Lee, Min Jin;Hong, Helen
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.67-70
    • /
    • 2015
  • We propose an automatic vessel segmentation method of vertebral arteries in CT angiography using combined circular and cylindrical model fitting. First, to generate multi-segmented volumes, whole volume is automatically divided into four segments by anatomical properties of bone structures along z-axis of head and neck. To define an optimal volume circumscribing vertebral arteries, anterior-posterior bounding and side boundaries are defined as initial extracted vessel region. Second, the initial vessel candidates are tracked using circular model fitting. Since boundaries of the vertebral arteries are ambiguous in case the arteries pass through the transverse foramen in the cervical vertebra, the circle model is extended along z-axis to cylinder model for considering additional vessel information of neighboring slices. Finally, the boundaries of the vertebral arteries are detected using graph-cut optimization. From the experiments, the proposed method provides accurate results without bone artifacts and eroded vessels in the cervical vertebra.

Unscented Kalman Snake for 3D Vessel Tracking

  • Lee, Sang-Hoon;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 2015
  • Purpose In this paper, we propose a robust 3D vessel tracking algorithm by utilizing an active contour model and unscented Kalman filter which are the two representative algorithms on segmentation and tracking. Materials and Methods The proposed algorithm firstly accepts user input to produce an initial estimate of vessel boundary segmentation. On each Computed Tomography Angiography (CTA) slice, the active contour is applied to segment the vessel boundary. After that, the estimation process of the unscented Kalman filter is applied to track the vessel boundary of the current slice to estimate the inter-slice vessel position translation and shape deformation. Finally both active contour and unscented Kalman filter are inter-operated for vessel segmentation of the next slice. Results The arbitrarily shaped blood vessel boundary on each slice is segmented by using the active contour model, and the Kalman filter is employed to track the translation and shape deformation between CTA slices. The proposed algorithm is applied to the 3D visualization of chest CTA images using graphics hardware. Conclusion Through this algorithm, more opportunities, giving quick and brief diagnosis, could be provided for the radiologist before detailed diagnosis using 2D CTA slices, Also, for the surgeon, the algorithm could be used for surgical planning, simulation, navigation and rehearsal, and is expected to be applied to highly valuable applications for more accurate 3D vessel tracking and rendering.

A Post Smoothing Algorithm for Vessel Segmentation

  • Li, Jiangtao;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.345-346
    • /
    • 2009
  • The segmentation of vessel including portal vein, hepatic vein and artery, from Computed Tomography (CT) images plays an important role in the therapeutic strategies for hepatic diseases. Representing segmented vessels in three dimensional spaces is extremely useful for doctors to plan liver surgery. In this paper, proposed method is focused on smoothing technique of segmented 3D liver vessels, which derived from 3D region growing approach. A pixel expand algorithm has been developed first to avoid vessel lose and disconnection cased by the next smoothing technique. And then a binary volume filtering technique has been implemented and applied to make the segmented binary vessel volume qualitatively smoother. This strategy uses an iterative relaxation process to extract isosurfaces from binary volumes while retaining anatomical structure and important features in the volume. Hard and irregular place in volume image has been eliminated as shown in the result part, which also demonstrated that proposed method is a suitable smoothing solution for post processing of fine vessel segmentation.

A dual path encoder-decoder network for placental vessel segmentation in fetoscopic surgery

  • Yunbo Rao;Tian Tan;Shaoning Zeng;Zhanglin Chen;Jihong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.15-29
    • /
    • 2024
  • A fetoscope is an optical endoscope, which is often applied in fetoscopic laser photocoagulation to treat twin-to-twin transfusion syndrome. In an operation, the clinician needs to observe the abnormal placental vessels through the endoscope, so as to guide the operation. However, low-quality imaging and narrow field of view of the fetoscope increase the difficulty of the operation. Introducing an accurate placental vessel segmentation of fetoscopic images can assist the fetoscopic laser photocoagulation and help identify the abnormal vessels. This study proposes a method to solve the above problems. A novel encoder-decoder network with a dual-path structure is proposed to segment the placental vessels in fetoscopic images. In particular, we introduce a channel attention mechanism and a continuous convolution structure to obtain multi-scale features with their weights. Moreover, a switching connection is inserted between the corresponding blocks of the two paths to strengthen their relationship. According to the results of a set of blood vessel segmentation experiments conducted on a public fetoscopic image dataset, our method has achieved higher scores than the current mainstream segmentation methods, raising the dice similarity coefficient, intersection over union, and pixel accuracy by 5.80%, 8.39% and 0.62%, respectively.

Deep Learning-Based Lumen and Vessel Segmentation of Intravascular Ultrasound Images in Coronary Artery Disease

  • Gyu-Jun Jeong;Gaeun Lee;June-Goo Lee;Soo-Jin Kang
    • Korean Circulation Journal
    • /
    • v.54 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • Background and Objectives: Intravascular ultrasound (IVUS) evaluation of coronary artery morphology is based on the lumen and vessel segmentation. This study aimed to develop an automatic segmentation algorithm and validate the performances for measuring quantitative IVUS parameters. Methods: A total of 1,063 patients were randomly assigned, with a ratio of 4:1 to the training and test sets. The independent data set of 111 IVUS pullbacks was obtained to assess the vessel-level performance. The lumen and external elastic membrane (EEM) boundaries were labeled manually in every IVUS frame with a 0.2-mm interval. The Efficient-UNet was utilized for the automatic segmentation of IVUS images. Results: At the frame-level, Efficient-UNet showed a high dice similarity coefficient (DSC, 0.93±0.05) and Jaccard index (JI, 0.87±0.08) for lumen segmentation, and demonstrated a high DSC (0.97±0.03) and JI (0.94±0.04) for EEM segmentation. At the vessel-level, there were close correlations between model-derived vs. experts-measured IVUS parameters; minimal lumen image area (r=0.92), EEM area (r=0.88), lumen volume (r=0.99) and plaque volume (r=0.95). The agreement between model-derived vs. expert-measured minimal lumen area was similarly excellent compared to the experts' agreement. The model-based lumen and EEM segmentation for a 20-mm lesion segment required 13.2 seconds, whereas manual segmentation with a 0.2-mm interval by an expert took 187.5 minutes on average. Conclusions: The deep learning models can accurately and quickly delineate vascular geometry. The artificial intelligence-based methodology may support clinicians' decision-making by real-time application in the catheterization laboratory.

Automatic Segmentation of Retinal Blood Vessels Based on Improved Multiscale Line Detection

  • Hou, Yanli
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2014
  • The appearance of retinal blood vessels is an important diagnostic indicator of serious disease, such as hypertension, diabetes, cardiovascular disease, and stroke. Automatic segmentation of the retinal vasculature is a primary step towards automatic assessment of the retinal blood vessel features. This paper presents an automated method for the enhancement and segmentation of blood vessels in fundus images. To decrease the influence of the optic disk, and emphasize the vessels for each retinal image, a multidirectional morphological top-hat transform with rotating structuring elements is first applied to the background homogenized retinal image. Then, an improved multiscale line detector is presented to produce a vessel response image, and yield the retinal blood vessel tree for each retinal image. Since different line detectors at varying scales have different line responses in the multiscale detector, the line detectors with longer length produce more vessel responses than the ones with shorter length; the improved multiscale detector combines all the responses at different scales by setting different weights for each scale. The methodology is evaluated on two publicly available databases, DRIVE and STARE. Experimental results demonstrate an excellent performance that approximates the average accuracy of a human observer. Moreover, the method is simple, fast, and robust to noise, so it is suitable for being integrated into a computer-assisted diagnostic system for ophthalmic disorders.

An Automatic Algorithm for Vessel Segmentation in X-Ray Angiogram using Random Forest (랜덤 포레스트를 이용한 X-선 혈관조영영상에서의 혈관 자동 영역화 알고리즘)

  • Jung, Sunghee;Lee, Soochahn;Shim, Hackjoon;Jung, Ho Yub;Heo, Yong Seok;Chang, Hyuk-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.79-85
    • /
    • 2015
  • The purpose of this study is to develop an automatic algorithm for vessel segmentation in X-Ray angiogram using Random Forest (RF). The proposed algorithm is composed of the following steps: First, the multiscale hessian-based filtering is performed in order to enhance the vessel structure. Second, eigenvalues and eigenvectors of hessian matrix are used to learn the RF classifier as feature vectors. Finally, we can get the result through the trained RF. We evaluated the similarity between the result of proposed algorithm and the manual segmentation using 349 frames, and compared with the results of the following two methods: Frangi et al. and Krissian et al. According to the experimental results, the proposed algorithm showed high similarity compared to other two methods.