• Title/Summary/Keyword: Vessel force

Search Result 245, Processing Time 0.029 seconds

Variation of the structural stability for the sonar dome window in a naval vessel according to the state of the drain valve (소나돔 충, 배수 밸브의 상태에 따른 함정용 소나돔 윈도우의 구조안정도 변화)

  • Han, HyungSuk;Lee, KyungHyun;Park, SeongHo;Lim, YongSoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.844-853
    • /
    • 2014
  • Since the active sonar for a naval vessel is usually installed in a bulbous bow, GRP(Glass reinforced plastic) material with low density and high strength is used for the material of the sonar dome window in order to prohibit impact by slamming wave or foreign material in the sea. The structural safety of the sonar dome is varied according to the interior and exterior distributed pressure on the sonar dome. Therefore, the variation of the structural safety according to the pressure variation of the sonar dome window caused by the drain valve state is studied by CAE.

A study on the method of conducting a large container vessel safely to the newly built container pier to get alongside in busan harbour (부산항 콘테이너부두에 대형 콘테이너선의 안전접안조종을 위한 연구)

  • Yoo, Jeom-Dong;Yun, Jong-Hwui;Lee, Chun-Ki
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.303-308
    • /
    • 2006
  • In this paper, the authors calculated manoeuvring motions of a large container vessel approaching to the newly built container piers to get alongside to her berth in Busan harbour. The motion calculations were done by using fixed coordinate system and the object of the calculations is to check the manoeuvring motions are safe or not for berthing the large vessel to her berth. The result of calculations manifested that a large container vessel can get alongside to the piers without any difficulty under normal weather conditions by using 2 Z. Peller tug boats of 4500 H.P. each and also these demonstrated it is difficult to conduct and get her alongside to the piers under rough weather conditions of wind force 16.9m/sec or more. Under rough weather conditions of 6 by beaufort scale the average wind velocity is about 13.5m and if we add 25% increase of the normal velocity to it, the wind will becomes a gust of 16.9m/sec. So it is advisable to avoid conducting a large container vessel to the pier under the rough weather conditions of 6 or more by beaufort scale. Also, I is better to use 3 Z. peller tug boats of 4500 HP. each under the above mentioned rough weather in a case of unavoidable circumstances.

  • PDF

The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향)

  • Kang, Ki-Weon;Kim, Young-Soo;Lee, Mee-Hae;Choi, Rin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

Development of the Hydraulic Pressure Transducer System for Testing the Impact Energy of Hydraulic Breaker (유압 브레이커의 타격 에너지 측정을 위한 유압 변환장치 개발)

  • 이근호;이용범;정동수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.154-160
    • /
    • 2004
  • Hydraulic breaker of excavator has been used for the destruction and disassembling of buildings, crashing road pavement, breaking rocks at quaky and etc. The performance of breakers is evaluated their own destructive force and the number of impact by input hydraulic flow rate and pressure on the operating conditions. Because hydraulic breakers generate high impact energy, the accurate measurement of the impact force has been facing a technical challenge. In this study, the hydraulic pressure transducer system was developed based on the characteristics of pressure variation in closed vessel fur testing the impact energy. The hydraulic pressure transducer system is consisted with a hydraulic cylinder, main base, pressure & temperature sensors, LVDT, data acquisition system and etc. The developed hydraulic pressure transducer system was applied to measure the impact energy for hydraulic breaker. The measured impact force was 438.8 kgf.m within the designed impact force bounds. The developed hydraulic pressure transducer system as a simple tester could be applied to measure the impact force and the number of impact.

A Study on Towing Characteristics of Barge Considering Wind Force (풍하중에 의한 바지선의 예인 시 거동특성 변화에 관한 연구)

  • Nam, Bo Woo;Choi, Young-Myoung;Hong, Sa Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.283-290
    • /
    • 2015
  • This paper presents the results of a numerical study on the towing characteristics of a barge under various wind conditions. First, stability criteria, including the wind force, were derived based on the linear motion equations of a towed vessel. The effect of the wind force on the towing stability was investigated using stability criteria. Next, towing simulations were carried out using a nonlinear time-domain simulation method. In this case, the towline was modeled as a simple spring-damper, and the wind force was computed using the wind coefficient from CFD calculations. Simulations were conducted for a barge under a constant towing speed and constant wind speed conditions. The effect of the wind direction on the slewing motion was also observed. In addition, a series of numerical simulations using variable wind speeds were performed for the present barge with and without a skeg.

Crabbing Motion Testing of Waterjet-Powered Ships Using Stern Thrusters

  • Joopil Lee;Seung-Ho Ham
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.10-17
    • /
    • 2024
  • This study assessed the potential for crabbing motion in waterjet ships by exclusively employing stern thrusters. The theoretical considerations were validated through practical sea trials on the naval vessel PKG (Patrol Killer Guided missile) equipped with three stern thrusters. The control forces were calculated using the force equilibrium equation. The results showed that the hull exhibited rotations and lateral movements under wind influence. The port tail exhibited a leftward turning tendency due to the wind. This phenomenon arises from the dominance of the rotational force generated by the stern thruster over the lateral force exerted by the hull, making it challenging to maintain force equilibrium. In the sea trial, the hull rotated by 10° and moved 10.8 m laterally, with a longitudinal movement of 0.26 m. Remarkably, the lateral movement surpassed the longitudinal displacement, indicating the success of the trial. The substantial lateral travel distance provided tangible evidence that the crabbing motion of the ship is achievable using only stern thrusters. This study contributes valuable insights into enhancing the maneuverability of waterjet ships, offering practical applications for naval operations and maritime activities.

A Study for the Evaluation of Ship Collision Forces for the Design of Bridge Pier I : Mean Collision Force (교각에 작용하는 설계선박충돌력 산정에 관한 연구 I : 평균충돌력)

  • Lee, Gye Hee;Hong, Kwan Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.199-206
    • /
    • 2011
  • In Korea, the current design codes for the bridge vessel collision load are based on AASHTO LRFD code which derived from the mean collision forces of the Woisin's test. To estimate the conservativeness of the code, in this study, the mean forces of head on collisions were evaluated from the mass-acceleration relationship of vessel and the deformation-kinetic energy relationship of bow those obtained from the series of nonlinear finite element analysis, and the mean forces were compared to that in AASHTO design code. As results, the variations of the mean forces versus the sizes of vessels were represented similar tendency, even those of the code are very conservative. However, the variations of mean collision force versus those of collision speeds were dominated by the plastic deformation of bow and it was differ from those of the code that have linear relationship with the collision speeds.

A Study on FEM of the Bearing Girder in the Large Vessel Engine Structure (선박 엔진 베어링 거더의 유한요소해석에 관한 연구)

  • Park, Young-Joon;Shim, Mun-Bo;Kim, Hyun-Jun;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1877-1885
    • /
    • 2004
  • The purpose of this study is to show pressure distribution of the bearing girder in large vessel engine and to consider finite elements analysis using the pressure distribution. Various kinds of the exciting forces act on a bearing girder. And at the same time, it is necessary to consider the contact between a crankshaft and a bearing girder because a bearing girder supports a crankshaft. However it is to need the computer resource with much time if we apply the contact element to a complex solid model and perform a repeated analysis. Thus we have accomplished a contact analysis in the simplistic finite element model of the bearing girder. After that we take a pressure distribution, and apply this to actual finite element model and accomplish finite element analysis. The result of stresses and strains has been produced using superposition method. The concept of superposition method is to find the resultant deflection of several loads acting on a member as the sum of contributions of individual loads. The results were compared with measured results and were verified to be accurate. Resulting analyzed strain favorably coincides with measured strain. The experiment result justifies this paper method.

A Study on Behaviors of Pile Protective Structures by Simplified Collision Model (간이충돌모델을 이용한 파일형 선박충돌방호공의 충돌거동 연구)

  • Lee, Gye Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • In this paper, the deformation-energy curves of the plastic hinges and the vessel bow, which are the major energy dissipation mechanism of a pile protective structures, were estimated, and the parametric study was performed by using those curves to apply the simplified collision model which developed in the previous study. Considered parameters were the mass of slab, the number of piles, the mass of vessel and the collision speed. As results, the difference of energy dissipation mechanism of two pile types (filled and non-filled) were revealed, and the collision behaviors of the protective structures could be tuned by the control of the inertia mass of capping slab. Therefore the simplified collision model can be used in a primary design and optimal design.

Prediction of a research vessel manoeuvring using numerical PMM and free running tests

  • Tiwari, Kunal;Hariharan, K.;Rameesha, T.V.;Krishnankutty, P.
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.333-357
    • /
    • 2020
  • International Maritime Organisation (IMO) regulations insist on reduced emission of CO2, noxious and other environmentally dangerous gases from ship, which are usually let out while burning fossil fuel for running its propulsive machinery. Contrallability of ship during sailing has a direct implication on its course keeping and changing ability, and tries to have an optimised routing. Bad coursekeeping ability of a ship may lead to frequent use of rudder and resulting changes in the ship's drift angle. Consequently, it increases vessels resistance and also may lead to longer path for its journey due to zigzag movements. These adverse effects on the ship journey obviously lead to the increase in fuel consumption and higher emission. Hence, IMO has made it mandatory to evaluate the manoeuvring qualities of a ship at the designed stage itself. In this paper a numerical horizontal planar motion mechanism is simulated in CFD environment and from the force history, the hydrodynamic derivatives appearing in the manoeuvring equation of motion of a ship are estimated. These derivatives along with propeller thrust and rudder effects are used to simulate different standard manoeuvres of the vessel and check its parameters against the IMO requirements. The present study also simulates these manoeuvres by using numerical free running model for the same ship. The results obtained from both these studies are presented and discussed here.