• Title/Summary/Keyword: Vesicular glutamate transporter

Search Result 6, Processing Time 0.022 seconds

Expression of vesicular glutamate transporter in transient receptor potential vanilloid 1-positive neurons in the rat trigeminal ganglion

  • Han, Hye Min;Cho, Yi Sul;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.119-126
    • /
    • 2021
  • Activation of transient receptor potential vanilloid 1 (TRPV1), a calcium permeable channel expressed in primary sensory neurons, induces the release of glutamate from their central and peripheral afferents during normal acute and pathological pain. However, little information is available regarding the glutamate release mechanism associated with TRPV1 activation in primary sensory neurons. To address this issue, we investigated the expression of vesicular glutamate transporter (VGLUT) in TRPV1-immunopositive (+) neurons in the rat trigeminal ganglion (TG) under normal and complete Freund's adjuvant (CFA)-induced inflammatory pain conditions using behavioral testing as well as double immunofluorescence staining with antisera against TRPV1 and VGLUT1 or VGLUT2. TRPV1 was primarily expressed in small and medium-sized TG neurons. TRPV1+ neurons constituted approximately 27% of all TG neurons. Among all TRPV1+ neurons, the proportion of TRPV1+ neurons coexpressing VGLUT1 (VGLUT1+/TRPV1+ neurons) and VGLUT2 (VGLUT2+/TRPV1+ neurons) was 0.4% ± 0.2% and 22.4% ± 2.8%, respectively. The proportion of TRPV1+ and VGLUT2+ neurons was higher in the CFA group than in the control group (TRPV1+ neurons: 31.5% ± 2.5% vs. 26.5% ± 1.2%, VGLUT2+ neurons: 31.8% ± 1.1% vs. 24.6% ± 1.5%, p < 0.05), whereas the proportion of VGLUT1+, VGLUT1+/TRPV1+, and VGLUT2+/TRPV1+ neurons did not differ significantly between the CFA and control groups. These findings together suggest that VGLUT2, a major isoform of VGLUTs, is involved in TRPV1 activation-associated glutamate release during normal acute and inflammatory pain.

Human Vesicular Glutamate Transporters Functionally Complement EAT-4 in C. elegans

  • Lee, Dukgyu;Jung, Sunki;Ryu, Jungmin;Ahnn, Joohong;Ha, Ilho
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.50-54
    • /
    • 2008
  • The vesicular glutamate transporter (VGLUT) transports glutamate into pre-synaptic vesicles. Three isoforms of VGLUT have been identified in humans, but their functional differences remain largely unknown. EAT-4 is the only homologue of human VGLUT in C. elegans. Here we report that mutants of eat-4 exhibit hyperforaging behavior and that each of the isoforms of human VGLUT functionally rescues the defects in eat-4 worms.

Distinct cell populations of ventral tegmental area process motivated behavior

  • Kim, Min Jung;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.307-312
    • /
    • 2022
  • It is well known that dopamine transmission from the ventral tegmental area (VTA) modulates motivated behavior and reinforcement learning. Although dopaminergic neurons are the major type of VTA neurons, recent studies show that a significant proportion of the VTA contains GABAergic and type 2 vesicular glutamate transporter (VGLUT2)-positive neurons. The non-dopaminergic neurons are also critically involved in regulating motivated behaviors. Some VTA neurons appear to co-release two different types of neurotransmitters. They are VGLUT2-DA neurons, VGLUT2-GABA neurons and GABA-DA neurons. These co-releasing neurons show distinct features compared to the neurons that release a single neurotransmitter. Here, we review how VTA cell populations wire to the other brain regions and how these projections differentially contribute to motivated behavior through the distinct molecular mechanism. We summarize the activities, projections and functions of VTA neurons concerning motivated behavior. This review article discriminates VTA cell populations related to the motivated behavior based on the neurotransmitters they release and extends the classical view of the dopamine-mediated reward system.

The CCAAT-box transcription factor, NF-Y complex, mediates the specification of the IL1 neurons in C. elegans

  • Woojung Heo;Hyeonjeong Hwang;Jimin Kim;Seung Hee Oh;Youngseok Yu;Jae-Hyung Lee;Kyuhyung Kim
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • Neuronal differentiation is highly coordinated through a cascade of gene expression, mediated via interactions between trans-acting transcription factors and cis-regulatory elements of their target genes. However, the mechanisms of transcriptional regulation that determine neuronal cell-fate are not fully understood. Here, we show that the nuclear transcription factor Y (NF-Y) subunit, NFYA-1, is necessary and sufficient to express the flp-3 neuropeptide gene in the IL1 neurons of C. elegans. flp-3 expression is decreased in dorsal and lateral, but not ventral IL1s of nfya-1 mutants. The expression of another terminally differentiated gene, eat-4 vesicular glutamate transporter, is abolished, whereas the unc-8 DEG/ENaC gene and pan-neuronal genes are expressed normally in IL1s of nfya-1 mutants. nfya-1 is expressed in and acts in IL1s to regulate flp-3 and eat-4 expression. Ectopic expression of NFYA-1 drives the expression of flp-3 gene in other cell-types. Promoter analysis of IL1-expressed genes results in the identification of several cis-regulatory motifs which are necessary for IL1 expression, including a putative CCAAT-box located in the flp-3 promoter that NFYA-1 directly interacts with. NFYA-1 and NFYA-2, together with NFYB-1 and NFYC-1, exhibit partly or fully redundant roles in the regulation of flp-3 or unc-8 expression, respectively. Taken together, our data indicate that the NF-Y complex regulates neuronal subtype-specification via regulating a set of terminal-differentiation genes.

Axonal sprouting in the dorsal cochlear nucleus affects gap-prepulse inhibition following noise exposure

  • Kyu-Hee Han;Seog-Kyun Mun;Seonyong Sohn;Xian-Yu Piao;Ilyong Park;Munyoung Chang
    • International Journal of Molecular Medicine
    • /
    • v.44 no.4
    • /
    • pp.1473-1483
    • /
    • 2019
  • One of the primary theories of the pathogenesis of tinnitus involves maladaptive auditory-somatosensory plasticity in the dorsal cochlear nucleus (DCN), which is assumed to be due to axonal sprouting. Although a disrupted balance between auditory and somatosensory inputs may occur following hearing damage and may induce tinnitus, examination of this phenomenon employed a model of hearing damage that does not account for the causal relationship between these changes and tinnitus. The present study aimed to investigate changes in auditory-somatosensory innervation and the role that axonal sprouting serves in this process by comparing results between animals with and without tinnitus. Rats were exposed to a noise-inducing temporary threshold shift and were subsequently divided into tinnitus and non-tinnitus groups based on the results of gap prepulse inhibition of the acoustic startle reflex. DCNs were collected from rats divided into three sub-groups according to the number of weeks (1, 2 or 3) following noise exposure, and the protein levels of vesicular glutamate transporter 1 (VGLUT1), which is associated with auditory input to the DCN, and VGLUT2, which is in turn primarily associated with somatosensory inputs, were assessed. In addition, factors related to axonal sprouting, including growth-associated protein 43 (GAP43), postsynaptic density protein 95, synaptophysin, α-thalassemia/mental retardation syndrome X-linked homolog (ATRX), growth differentiation factor 10 (GDF10), and leucine-rich repeat and immunoglobulin domain-containing 1, were measured by western blot analyses. Compared to the non-tinnitus group, the tinnitus group exhibited a significant decrease in VGLUT1 at 1 week and a significant increase in VGLUT2 at 3 weeks post-exposure. In addition, rats in the tinnitus group exhibited significant increases in GAP43 and GDF10 protein expression levels in their DCN at 3 weeks following noise exposure. Results from the present study provided further evidence that changes in the neural input distribution to the DCN may cause tinnitus and that axonal sprouting underlies these alterations.

Detection Methods of Histochemically-reactive Zinc in the CNS at the Light Microscopical Level (중추신경계통 내 분포하는 zinc 이온의 조직화학적 동정법 비교: I. 광학현미경수준에서)

  • Kim, Yi-Suk;Kim, Sang-Hyun;Lee, Beob-Yi;Lee, Hyun-Sook;Kim, Sung-Joo;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.38 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • Small amounts of zinc ions regulate a plentitude of enzymatic proteins, receptors and transcription factors, thus cells need accurate homeostasis of zinc ions. Some neurons have developed mechanisms to accumulate zinc in specific membrane compartment ("vesicular zinc"), which can be evidenced using histochemical techniques. These neurons are the socalled zinc enriched (ZEN) neurons, which accumulate glutamate and zinc inside their synaptic vesicles and release it during synaptic transmission. In the present paper we have studied the distribution of the ZEN terminals in the rat hippo-campus using ZnSe autometallography, Neo-Timm staining, ZnT3 immunohistochemistry and TSQ fluorescence staining.