• Title/Summary/Keyword: Vertical variation

Search Result 923, Processing Time 0.026 seconds

The influence of the pre-sag of a railway contact wire to the current collection performance (200km/h급 전차선로에서 사전이도가 미치는 집전성능 영향 분석연구)

  • Cho, Yong-Hyeon;Lee, Ki-Won;Park, Chan-Bae
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.227-235
    • /
    • 2007
  • The railway catenary is softer in the middle of a span than at the end. This stiffness variation induce the vertical motion of a moving pantograph, which results in the large variation of contact forces. To reduce the vertical motion of a pantograph, we can introduce a pre-sag of the contact wire. The pre-sag changes merely equilibrium position of the contact wire. Because the pantograph must follow the sag added to the motion of the contact wire, the sag gives downward forces to the pantograph. If the pre-sag is proper, the variation of the vertical motion of the pantograph is reduced. However, excessive sag worses the current collection performance because the pantograph receives too large downward forces by the contact wire. The objective of the paper is to establish the theoretical basis to understand how the pre-sag affect the contact force variation and to propose the proper sag for the railway catenary for the train speed up to 200 km/h.

  • PDF

LCD Glass strain Simulation For Large Size Imprint Equipment (대면적 임프린트 장비를 위한 LCD Glass 변형 시뮬레이션 연구)

  • Song, Young-Joong;Shin, Dong-Hoon;Im, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1626-1631
    • /
    • 2007
  • The purpose of the study is to simulate the displacement of the LCD glass during process of a large size imprint. During this process, a small temperature variation makes thermal stress, which causes the horizontal variation of mold and glass. During alignment process to fix the LCD glass on a alignment stage, the vertical displacement is made by the absorption pressure and the shear stress. This study simulates the horizontal displacement of mold and glass due to temperature variation, the vertical displacement depending on the shape of absorption surface fixing the LCD glass in the alignment process, and the horizontal and vertical displacement which occurs in the LCD glass at the alignment process. Algor which is a FEM code for a framework simulation was applied. Temperature variation above ${\pm}$ $0.1^{\circ}C$ on mold and glass causes the horizontal displacement of 150nm due to thermal expansion. The vertical displacement due to the circular is ten times of the case of rectangular absorption nozzle. The displacement of the LCD glass in the alignment process is about 49nm.

  • PDF

The Variation of Engineering Characteristics of Soft Ground with Construction Step of Vertical Drains (연직배수공법 시공단계별 연약지반의 공학적 특성변화 분석)

  • 정하익;정길수;이용수;진규남;이재식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.655-662
    • /
    • 2000
  • This study concerns with the variation of engineering characteristics of soft ground under embankment treated vertical drains. The derived engineering characteristics can be used in the prediction of increased strength of soft ground treated with vertical drains. The variations of physical properties such as liquid limit, natural water content, void ratio, and dry unit weight, and mechanical properties such as strength, preconsolidation ratio, compressibility are analysed and suggested. The co-relation of physical properties and mechanical properties with installation of vertical drains in soft ground are derived in this study.

  • PDF

Study for Dynamic Stall Characteristics of Vertical Axis Wind Turbine Airfoil (수직형 풍력터빈 익형의 동특성 분석)

  • Kim, Cheol-Wan;Cho, Tae-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.478-481
    • /
    • 2009
  • As a first step for aerodynamic analysis of vertical axis wind turbine, dynamic stall characteristics of airfoil was investigated. Dynamic stall of wind turbine airfoil is caused by severe variation of angle of attack and relative velocity of flow around airfoil. Angle of attack and relative velocity can be expressed with tip speed ratio. Variation of angle of attack is strongly dependent on the tip speed ratio. For tip speed ratio, 1.4 and free stream velocity, 15m/s, dynamic stall characteristics of wind turbine airfoil is compared with those of oscillating airfoil having same angle of attack variation.

  • PDF

Vertical Profiles of Meteorological Parameters over Taegu City

  • Ahn, Byung-Ho;Kwak, Young-Sil
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.22 no.1
    • /
    • pp.24-32
    • /
    • 1994
  • A special upper-air observation including airsonde and pibal observations was performed to investigate the characteristics features of the vertical distribution of the meteorological elements over Taegu on a selected clear day of each season from October 1991 to August 1992. The diurnal and seasonal variations of the vertical profiles of air temperature and mixing ratio were obtained from airsonde observations and wind speed and direction from pibal observations. The results of these special upper-air observations are as follow : The diurnal variation of the vertical distribution of air temperature reveals the characteristic features associated with the atmospheric boundary layer. All case days, except for the summer season, show upper-level inversion layer which influenced by surface high, and surface inversion layer produced by radiative cooling. The diurnal variation of mixing ratio shows the maximum vale at 1500 LST in both the upper and low levels, and is larger on the lower level than the upper level. The mixing ratio of the lower level is larger than that of the upper level. On the average the mixing ratio decrease with the height, and is the wettest on the summer case day and the driest on the winter case day. The diurnal variation of the wind velocity and direction are variable in the lower level with time and height, while they are steady in the upper level. On the average, the wind direction is southerly or southeasterly for the summer case day, westerly or northwesterly for the spring and fall case days, and northerly or northwesterly for the winter case day.

  • PDF

A Study on the Concept Design of Vertical Wind Tunnel for Skydiver (고공 강하용 수직풍동의 개념설계에 관한 연구)

  • Cho, Hwan Kee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • This paper describes a case study on the design factor analysis of vertical wind tunnel for skydiver's training or experiencing of paradropping exercise in the air. The case study of vertical wind tunnel design is to provide the knowledges on effects of parameter's variation when it is applied to overall or partial duct of tunnel circuit. The analysis of design parameters based on pressure loss are produced one by one through the tunnel components from the flight chamber because the wind tunnel must satisfy the requirement of flight chamber such as flow speed, quality and quantity. Results shows the various effects of parameter variation with pressure loss in the wind tunnel circuit. Pressure loss should be based on the determination of fan and power system which can be selected from market or new design.

Effects of Vertical Eddy Viscosity on the Velocity Profile - Cases of Given Vertical Eddy viscosity - (鉛直 過粘性係數가 流速의 鉛直構造에 미치는 影響 - 鉛直 過粘性係數가 주어진 境遇 -)

  • 이종찬;최병호
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.119-131
    • /
    • 1994
  • Vertical structures of wind-driven and tidal currents in a rectangular shaped uniform-depth basin of homogeneous water have been investigated using a mode-splitted, multi-level grid-box, hydrodynamic numerical model. The model was verified using analytical solutions for various vertical eddy viscosity profiles such as: a constant eddy viscosity, a linearly decreasing or increasing variation with depth, a quadratic variation with depth and an exponential variation with depth. Particular attention has been paid on the effects of "near-surface wall layer" on vertical shear of velocity. In numerical calculations, the whole water depth was divided into 13 levels with an unequal grid spacing. the model satisfactorily reproduces the velocity profile, but in case the eddy viscosity decreases rapidly with depth as in quadratical or exponential variation with depth, the vertical gradient of velocity near the bottom became very steep, and analytical solutions and numerical results showed some discrepancy. The vertical structures of horizontal velocity vary with both the depth-averaged value of eddy viscosity and its profiles. the velocity near the sea surface and near the bottom responded sensitively to the eddy viscosity of wall layer. For wind-driven current, the strong velocity shear was generated near the sea surface as eddy viscosity near the surface became small. For tidal current, the velocity above the sea bottom layer was almost constant regardless of the profiles of vertical eddy viscosity, but velocity in the sea bottom layer showed strong shear as eddy viscosity became small.

  • PDF

Discharge Capacity for Vertical Drain Boards with Hydraulic Gradient Variation (동수경사 변화에 따른 연직배수재의 통수능)

  • Kim, Ju-Hyong;Lee, Kwang-Wu;Cho, Sam-Deok;Chang, Gap-Shik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • This paper studies the discharge capacity of vertical drain boards that is controlling hydraulic gradient among many factors in the specification. The KS K 0940(2008), a testing method based on the conventional Delft type method for measuring the discharge capacity of a vertical drain, was specified in Korea Standard recently. In this test method, the variation in hydraulic gradient can result in large differences in the discharge capacity for the same vertical drain board.

  • PDF

Vertical Migration of Sound Scatterers in the Southern Yellow Sea in Summer

  • Lu, Lian-Gang;Liu, Jianjun;Yu, Fei;Wu, Wei;Yang, Xiaodong
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Acoustic volume backscattering strength data were collected and Conductivity Temperature Depth (CTD) measurements were conducted in the southern Yellow Sea in summer 2005 and 2006. The high temporal and vertical resolution acoustic data measured with a 307 kHz Acoustic Doppler Current Profiler (ADCP) and a 250 kHz acoustic Doppler profile (ADP) had dominant diel variation, which resulted from vertical migration of sound scatterers. Some scatterers congregating in the bottom layer in the daytime migrated upward at dusk, and migrated downward into the bottom layer at dawn. The migration speeds were estimated. More than 33 days data show that the diel migration varies with time. The feature of migration measured with ADCP and ADP is consistent to some extent with what is described in the study on vertical migration of zooplankton in the southern Yellow Sea with conventional net samples.

Comparison of the effects of physico-chemical factors on the zonation and vertical distribution of benthic microalgal communities in the tidal flats of south-west Korea (한국 남서부 갯벌의 저서성 미세조류의 대상분포와 수직분포에 미치는 이화학적 요인의 효과에 관한 비교)

  • 이학영
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.529-535
    • /
    • 2002
  • Efffcts of physico-chemical factors on the zonation and vertical distribution of benthic microalgal communities in the tidal flats of Youngkwang and Canaiin, Korea, were studied. Concentrations of nutrients were low throughout the study period. A 38 species of benthic microaigae was identified. Most of the algae were pennate diatoms with small size. Cell numbers at silty sediments were higher than sandy sediments, and showed high patchy distribution. Zonal distributions of benthic microalgae showed higher variation from silty sediment than sandy sediments. Benthic microalgae showed vertical migration within the upper few mm of sediment with periodicity closely related to tidal cycles. Maximum cells were observed from 0 mm depth both sandy and silty sediments. Cells of benthic microalgae in the 1 - 2 mm depth decreased after desiccation of sediments. The variation of cells was higher at sandy sediments than silty sediments. Cell numbers of benthic microalgae showed no positive relationships with pH and nutrinets except NH$_4$-N.