• Title/Summary/Keyword: Vertical stability

Search Result 901, Processing Time 0.027 seconds

Evaluation of Stability Following Two-Jaw Surgery (양악 수술 후 안정성 평가)

  • Lee, Sung-Yong;Kim, Su-Gwan;Kim, Seo-Yoon;Oh, Ji-Su;Moon, Kyung-Nam;Yoon, Dae-Woong;Kim, Hoon;Kim, Jeong-Sun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • Purpose: Orthognathic surgery is required in patients with severe skeletal disharmony and facial asymmetry, which results in functional and esthetic improvement. Recently, bimaxillary surgery has become generalized. Establishment of the occlusal plane among several other factors included in the surgery plan is a major consideration for the diagnosis and treatment plan and it is also an important factor for postoperative stability. Methods: In this study, we assessed postoperative stability of occlusal plane, B-point, and pogonion point on 20 patients who underwent two-jaw surgery in the Chosun Dental Hospital from 2000 to 2007. Preoperative and postoperative states and at least a one year postoperative follow-up were compared. Results: The postsurgical relapse volume of the occlusal plane to the SN plane and the FH plane was $-0.26{\pm}2.8^{\circ}$ and $-0.44{\pm}3.29^{\circ}$, respectively and after two-jaw surgery, the stability of occlusal plane was maintained. The horizontal relapse degree was $0.85{\pm}0.46$ mm and $0.76{\pm}0.48$ mm, respectively, and the vertical relapse degree was $1.16{\pm}0.36$ mm and $1.13{\pm}0.71$ mm of the B point and the Pogonion point at the time after minimal 1 year. Conclusion: The vertical relapse amount was shown to be slightly larger than the horizontal relapse amount.

Projection of the Climate Change Effects on the Vertical Thermal Structure of Juam Reservoir (기후변화가 주암호 수온성층구조에 미치는 영향 예측)

  • Yoon, Sung Wan;Park, Gwan Yeong;Chung, Se Woong;Kang, Boo Sik
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.491-502
    • /
    • 2014
  • As meteorology is the driving force for lake thermodynamics and mixing processes, the effects of climate change on the physical limnology and associated ecosystem are emerging issues. The potential impacts of climate change on the physical features of a reservoir include the heat budget and thermodynamic balance across the air-water interface, formation and stability of the thermal stratification, and the timing of turn over. In addition, the changed physical processes may result in alteration of materials and energy flow because the biogeochemical processes of a stratified waterbody is strongly associated with the thermal stability. In this study, a novel modeling framework that consists of an artificial neural network (ANN), a watershed model (SWAT), a reservoir operation model(HEC-ResSim) and a hydrodynamic and water quality model (CE-QUAL-W2) is developed for projecting the effects of climate change on the reservoir water temperature and thermal stability. The results showed that increasing air temperature will cause higher epilimnion temperatures, earlier and more persistent thermal stratification, and increased thermal stability in the future. The Schmidt stability index used to evaluate the stratification strength showed tendency to increase, implying that the climate change may have considerable impacts on the water quality and ecosystem through changing the vertical mixing characteristics of the reservoir.

The Effect of Wave Pressure on Stability Rubble Mound Breakwater (사석식 경사방파제에 작용하는 파압이 제체 안정성에 미치는 영향)

  • Cheong, Gyu-Hyang;Lee, Yong-Dae;Lee, Byong-Moon;Jeong, Sam-Gi;Kim, Keun-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.579-584
    • /
    • 2009
  • Arrangement of the facilities for improving harbor functions depends on sea and land conditions such as the ship's arrival and departure conditions, waves and tide. And the plan and the size of the facilities depend much on harbor and marine environment condition such as cargo quantity, ship size, ship traffic and seawater circulation. Among these, waves have so much effect on a breakwater design that it is the most important to understand their characteristics and to apply them to breakwater design. Therefore, to analyze the effect of waves characteristics over a rubble mound breakwater, we have calculated wave pressure by using numerical analysis at each tide level and have analyzed the effect of wave pressure on structure stability by conducting the stability analysis with the wave pressure. As a result, it is found that during low and mean tide level time the biggest wave pressure is estimated near calm water level. But during high tide time, the biggest wave pressure is estimated in front of capping. And the stability analysis indicates also that a structure is most unstable when low tide time wave pressure is acting on. After reviewing the stability of a structure by applying vertical and horizon wave forces, it is concluded that safety factor is lower than ordinary time(max. about 15%), is also reviewed when designing a rubble mound breakwater.

  • PDF

Numerical study on basal heave stability of a circular vertical shaft constructed in clay (연약 점성토 지반에 시공되는 원형 수직구의 히빙 안정성에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.231-245
    • /
    • 2022
  • When vertical shafts are constructed in soft clay with low strength, there is a risk of basal heave, which causes the excavation surface to heave due to the low bearing capacity of the ground against the imbalance of earth pressure at the excavation surface. Methods of deriving a safety factor have been proposed to evaluate the stability against the basal heave. However, there are limitations in that it is difficult to accurately evaluate the heave stability because many assumptions are included in the theoretical derivation. In this study, assuming that a circular vertical shaft is constructed in soft clay, the existing safety factor equation proposed through a theoretical approach was supplemented. Bearing capacity according to the shaft geometry, inhomogeneity of the soil, and the effect of soil plug were considered theoretically and applied in a previous safety factor equation. A three-dimensional numerical analysis was conducted to simulate the occurrence of basal heave and review the supplemented equation through various case studies. Several series of case studies were conducted targeting various factors affecting heave stability. It was verified that the additionally considered characteristics were properly reflected in the supplemented equation. Furthermore, the effects of each factor constituting the safety factor equation were examined using the results of the numerical analysis performed by simulating various cases. It was confirmed that considering the undrained shear strength increment according to depth had the most significant effect on the calculation of the safety factor.

Skeletal Stability after Le Fort I Osteotomy in the Cleft Patients; Preliminary Report (구순구개열 환자의 Le Fort I 골절단술 후 상악골의 위치적 안정성에 관한 연구 ; 예비보고)

  • Kim Myung-Jin;Yu Ho-Seok;Kim Jong-Won;Kim Kyoo-Sik
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.2 no.1_2
    • /
    • pp.15-22
    • /
    • 1999
  • It is well known that the postoperative skeletal instability after Le Fort I osteotomy for advancement of maxilla in the cleft patients is one of the major surgical problems. So we had tried to compare the amount of relapse after Le Fort I advancement surgery in the horizontal and vertical positional change, angular change of reference points between cleft patients and non-cleft patients. Longitudinal records of 10 consecutive cleft patients (test group) and 20 non-cleft patients (control group) were analyzed. Lateral cephalograms were taken preoperatively, immediately postoperatively, and 2, 6, 12 months postoperatively. We measured horizontal and vertical changes (ANS, PNS, AI) and angular change (SNA) of the reference points and lines. In the test group, horizontal relapse of ANS, PNS, AI point are 36.4%, 37.5%, 32.0% respectively at 12 months postoperatively. The vertical relapse of ANS, PNS, AI are 25.3%, 32.3%, 39.1% respectively at 12 months postoperatively. The angular change of SNA is 33.6% at 12 months postoperatively. In the control group, horizontal relapse of ANS, PNS, AI point are 23.8%, 30.2%, 21.7% respectively at 12 months postoperatively. The vertical relapse of ANS, PNS, AI are 22.7%, 27.3%, 25.1% respectively at 12 months postoperatively. The angular change of SNA is 22.2% at 12 months postoperatively. The cleft patients have a larger tendency of skeletal and dental relapse compared with non-cleft patients after Le Fort I surgery. So the oral and maxillofacial surgeons must keep in mind these facts in order to minimize the relapse phenomenon from the beginning of surgical planning to postoperative care.

  • PDF

Stability Analysis of Vertical Pipeline Subjected to Underground Excavation (지하공간 굴착에 따른 수직파이프 구조물의 안정성해석)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.533-543
    • /
    • 2000
  • Deformation behavior and stability of vertical pipeline subjected to underground excavation have been studied by means of numerical analysis. Vortical ground displacements cause the pipe to be compressed, while horizontal ones cause it to be bent. In that region the vertical pipeline meets with the induced compressive stress and bending stress. In addition horizontal rock stress subjected to underground excavation may press the tube in its radial direction and it finally produces the tangential stress of pipe. In this study active gas well system is considered as an example of vertical pipelines. Factor analysis has been conducted which has great influence on the pipeline behavior. Three case studies are investigated which have the different pillar widths and gas well locations in pillar. For example, where overburden depth is 237.5 m and thickness of coal seam is 2.5 m, chain pillar of 45.8 m width in the 3-entry longwall system is proved to maintain safely the outer casing of gas welt which is made of API-55 steel, 10$\frac{3}{4}$ in. diameter and 0.4 in. thickness. Finally an active gas well which was broken by longwall mining is analyzed, where the induced shear stress turn out to exceed the allowable stress of steel.

  • PDF

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF INTERNALLY CONNECTED IMPLANT SYSTEMS (내부연결방식 임플랜트 시스템의 삼차원 유한요소법적 연구)

  • Kim Yu-Lee;Cho Hye-Won;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.85-102
    • /
    • 2006
  • Statement of problem: Currently, there are some 20 different geometric variations in implant/abutment interface available. The geometry is important because it is one of the primary determinants of joint strength, joint stability, locational and rotational stability. Purpose: As the effects of the various implant-abutment connections and the prosthesis height variation on stress distribution are not yet examined this study is to focus on the different types of implant-abutment connection and the prosthesis height using three dimensional finite element analysis. Material and method. The models were constructed with ITI, 3i TG, Bicon, Frialit-2 fixtures and solid abutment, TG post, Bicon post, EstheticBase abutment respectively. And the super structures were constructed as mandibular second premolar shapes with 8.5 mm, 11 mm, 13.5 mm of crown height. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the central pit of an occlusal surface. von Mises stresses were recorded and compared in the crowns, abutments, fixtures. Results: 1. Under the oblique loading, von Mises stresses were larger in the crown, abutment, fixture compared to the vertical loading condition. 2. The stresses were increased proportionally to the crown height under oblique loading but showed little differences with three different crown heights under vertical loading. 3. In the crown, the highest stress areas were loading points under vertical loading, and the finish lines under oblique loading. 4. Under the oblique loading, the higher stresses were located in the fixture/abutment interface of the Bicon and Frialit-2 systems compared to the ITI and TG systems. Conclusions: The stress distribution patterns of each implant-abutment system had difference among them and adequate crown height/implant ratio was important to reduce the stresses around the implants.

Tilted implants for implant-supported fixed hybrid prostheses: retrospective review

  • Woo-Hyun Seok;Pil-Young Yun;Na-Hee Chang;Young-Kyun Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.5
    • /
    • pp.278-286
    • /
    • 2023
  • Objectives: This review assessed the performance of implant-supported fixed hybrid prostheses in 21 patients who received a total of 137 implants between 2003 and 2010. The implants were evaluated for marginal bone resorption, complications, success rate, and survival rate based on their vertical angularity, type of bone graft, and measured implant stability. Materials and Methods: One-way ANOVA and chi-square tests were used to analyze the relationships among long-term evaluation factors and these variables. The mean initial bone resorption in the implant group with a vertical angle of more than 20° was 0.33 mm and mean final bone resorption was 0.76 mm. In contrast, the mean initial bone resorption in the implant group with a vertical angle of less than 10° was 1.19 mm and mean final bone resorption was 2.17 mm. Results: The results showed that mean bone resorption decreased with an increase in the vertical placement angle of the implants used in fixed hybrid prostheses, as well as in the group without additional bone grafts and those with high implant stability. The success rate of implants placed after bone grafting was found to be higher than those placed simultaneously. Conclusion: These results suggest that implant-supported fixed hybrid prostheses may be an effective treatment option for edentulous patients, and intentionally placing implants with high angularity may improve outcomes.

Plastic LCDs Using Pixel Isolated LC mode

  • Jung, Jong-Wook;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1220-1222
    • /
    • 2004
  • We developed a new device structure using anisotropic phase separation from liquid crystal (LC) and polymer composite materials using UV intensity variation and polymer wetting properties. In the device, the LC molecules are isolated in pixels where LCs are surrounded by the inter-pixel vertical polymer walls and the horizontal polymer films on the upper substrate. These devices show very good mechanical stability against external pressure. The electro-optic characteristics and the mechanical stability of the devices are discussed in view of the flexible display applications.

  • PDF