• 제목/요약/키워드: Vertical speed

검색결과 1,191건 처리시간 0.031초

The Kinematic Analysis of Driggs Motion in Horse Vaulting - a case study (도마에서 Driggs 기술의 운동학적 사례-분석)

  • Kim, Yoon-Ji
    • Korean Journal of Applied Biomechanics
    • /
    • 제15권3호
    • /
    • pp.175-183
    • /
    • 2005
  • This study investigates the kinetic characteristics of the Driggs motion in horse vaulting by stages through the three-dimensional video analysis of YTY and TABARA who won a high score and a low score respectively from the Driggs motion in horse vaulting during the Daegu Universiade 2003, which involves putting one's hands on the horse vaulting rotating sideways, stretching and rotating backward in the air, and twisting 900 degrees, so as to help develop the techniques of Korean gymnastic athletes. From the analyses of the duration of body center, horizontality, vertical position and horizontality, vertical speed and angle factors for each of four phases from the contact of the board to the takeoff from the horse vaulting. I arrived at the following conclusions: 1. It was found that the motion of bending oneself forward while rapidly stretching the knee joint when taking off from the board increases the horizontal speed of body center and shortens the time of the first jump. 2. It was found that S1 who won a high score shortened the time of the contact and takeoff from the horse vaulting and enlarged the shoulder joint angle for full blocking motion. It was also found that horizontal speed decreased while vertical speed increased when you rapidly stretch the right elbow joint while taking off from the horse vaulting. 3. It was found that horizontal distance was shortened to increase the height and time of staying in the air during the second jump.

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

Calculation of Vertical Wind Profile Exponents and Its Uncertainty Evaluation - Jeju Island Cases (풍속고도분포지수 산정 및 불확도 평가 - 제주도 사례)

  • Kim, You-Mi;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-yeol;Kim, Jin-Young;Kim, Chang Ki;Kim, Shin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • 제36권4호
    • /
    • pp.11-20
    • /
    • 2016
  • For accurate wind resource assessment and wind turbine performance test, it is essential to secure wind data covering a rotor plane of wind turbine including a hub height. In general, we can depict wind speed profile by extrapolating or interpolating the wind speed data measured from a meteorological tower where multiple anemometers are mounted at different heights using a power-law of wind speed profile. The most important parameter of a power-law equation is a vertical wind profile exponent which represents local characteristics of terrain and land cover. In this study, we calculated diurnal vertical wind profile exponents of 8 locations in Jeju Island who possesses excellent wind resource according to the GUM (Guide to the Expression of Uncertainty in Measurement) to evaluate its uncertainty. Expanded uncertainty is calculated by combined standard uncertainty, which is the result of composing type A standard uncertainty with type B standard uncertainty. Although pooled standard deviation should be considered to derive type A uncertainty, we used the standard deviation of vertical wind profile exponent of each day avoiding the difficult of uncertainty evaluation of diurnal wind profile variation. It is anticipated that the evaluated uncertainties of diurnal vertical wind profile exponents at 8 locations in Jeju Island are to be registered as a national standard reference data and widely used in the relevant areas.

Effects of the Revolution Speed on the Mechanical Properties & Microstructure of Cr-Mo Steel during Vertical Centrifugal Investment Casting (Cr-Mo강의 수직 원심 정밀 주조시의 조직 및 기계적 성질에 미치는 회전 속도의 영향)

  • Hur, Yong-Hyuk;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • 제21권5호
    • /
    • pp.296-303
    • /
    • 2001
  • The effects of the revolution speed on the mechanical properties and microstructure of Cr-Mo steel during vertical centrifugal casting using investment mold were investigated. The casting yield, tensile strength, hardness and absorbed energy during impact test were increased with increasing revolution speed. The effect of mass variation caused by the change in the revolution speed on the grain size was the most significant.

  • PDF

A Study on Characteristics of Cutting Tool Wear by Cooling Method in Rough Machining of Titanium Alloy (티타늄합금 황삭가공에서 냉각방법에 따른 절삭공구 마모특성에 관한 연구)

  • Kim, Gee-Hah
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제12권5호
    • /
    • pp.129-134
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace important parts and automobile important parts, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting tool cooling method and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the feed rate, cutting time and spindle speed are raised.

Dynamic Stability Evaluation of Special Bridge for High Speed Railroad under Vertical Ground Motion (연직 지진하중을 받는 고속철도 특수교량의 주행안정성 평가)

  • Kim, Dong-Seok;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1464-1469
    • /
    • 2010
  • In this paper, the dynamic stability evaluation of special bridge for high speed railway under ground excitation is performed. The mass, damping, stiffness matrices of bridge are derived from the modal frequencies and mode shape vectors which can be obtained by commercial program. And the high speed train is modeled as multi-single d.o.f models for the sake of vehicle-bridge interaction analysis. In the vehicle-bridge interaction analysis, the vertical directional interaction is only considered. As a numerical example, the 3 span Extradosed bridge which is expected to be installed in Ho-Nam high speed railroad is considered. The analysis results show that the example bridge satisfies the criteria of dynamic stability.

  • PDF

Dynamics of Track/Wheel Systems on High-Speed Vehicles

  • Kato Isamu;Terumichi Yoshiaki;Adachi Masahito;Sogabe Kiyoshi
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.328-335
    • /
    • 2005
  • For high speed railway vehicles, we consider a vibration of flexible track/wheel system. It is very important to deal with the complex phenomena of high-speed vehicles that can be occurred in the vertical vibration of the system. From a viewpoint of multibody dynamics, this kind of problem needs accurate analysis because the system includes mutual dynamic behaviors of rigid body and flexible body. The simulation technique for the complex problems is also discussed. We consider the high-speed translation, rail elasticity, elastic supports under the rail and contact rigidity. Eigen value analysis is also completed to verify the mechanism of the coupled vertical vibration of the system.

A Study on Characteristics of Cutting by Cutting Conditions in Titanium Machining (티타늄 가공의 절삭조건에 따른 가공특성에 관한 연구)

  • Kim, Gee-Hah
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제12권1호
    • /
    • pp.84-89
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace engine, structures and spacecraft exterior, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting depth and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time and cutting depth in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the cutting depth, feed rate, cutting time and spindle speed are raised.

Design of a Vertical Lathe for the Improved Stability at High Speed Machining (고속가공의 안정성 향상을 위한 수직선반의 설계)

  • Ro, Seung-Hoon;Shon, Jae-Yul;Ro, Kyung-Ho;Kim, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제27권10호
    • /
    • pp.1728-1737
    • /
    • 2003
  • The vertical lathe is a very popular machine tool in modem manufacturing industries because of its small area of installation. The small installation area is highly desirable for the flexibility improvement of the manufacturing systems such as FMS, CIM, and IMS. The vertical lathe, however, has much taller height compared to the traditional horizontal lathe, and consequently more severe vibrations. In this study, the structure of a vertical lathe is analyzed to investigate the dynamic properties and further to establish some ideas of the design alteration for the improved dynamic stability even at the higher operating speed. The simulation model is implemented to apply those design alterations for the optimization. The result of this study is not only prosperous but also ready to be applied to the optimum design of various machine tool structures for the improved stability.

Analysis of Variability for the Components of VGRF Signal via Increasing the Number of Attempt during Running (달리기 시도 수 증가에 따른 VGRF 신호 성분의 Variability 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • 제17권1호
    • /
    • pp.129-134
    • /
    • 2007
  • The purpose of this study was to determine the variability of components of the vertical ground reaction force signal to seek the suitable number of attempt datum to be analyzed during running at 2m/s and 4m/s. For this study, six subjects (height mean:$174.5{\pm}4.4cm$, weight $671.5{\pm}116.4N.$, age:$25.0{\pm}yrs.$) were selected and asked to run at least 3 times each run condition randomly. FFT(fast Fourier transform) was used to analyze the frequency domain analysis of the vertical ground reaction forces signal and an accumulated PSD (power spectrum density) was calculated to reconstruct the certain signal. To examine the deviation of the vertical ground reaction between signals collected from an different number of attempt, variability of frequency, magnitude of passive peak, time up to the passive peak and maximum load rate were determined in a coefficient of variance. The variability analysis revealed that when analyze the vertical reaction force components at 2m/s speed running, which belongs to slow pace relatively, it would be good to calculate these components from signal of one attempt, but 4m/s speed running needs data collected from two attempts to decrease the deviation of signal between attempts. In summary, when analyzing the frequency and passive peak of the vertical reaction force signal during the fast run, it should be considered the number of attempt.