• Title/Summary/Keyword: Vertical side wall

Search Result 91, Processing Time 0.025 seconds

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

The optimal array of various heat-generating heaters located on one wall of a vertical open top cavity (상부가 개방된 수직 캐비티내의 한쪽면에 배열된 다양한 발열조건을 갖는 발열체의 최적배열)

  • Riu, Kap-Jong;Choo, Hong-Lock;Choi, Byung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • An experimental investigation of two-dimensional steady natural convection cooling in a vertical open top cavity with conducting side walls of finite thickness is presented. The various heat-generating discrete heaters are located on one vertical wall of the cavity. When each heater dissipates different amount of power, the purpose of the work is to obtain the optimal array condition of the heaters. The four cases of non-uniform heating conditions are considered. The temperature fields in the cavity were visualized by the interferometer and local temperatures of the vertical wall were measured by thermocouples. The heaters were arranged in two configurations: flush-mounted on a vertical wall or protruding from the wall about 4.5 mm. The vertical wall was constructed out of copper or epoxy-resin sheet. Experiments have been conducted for air with constant Prandtl number(Pr=0.7), the aspect ratio of 4.6, 7.5, 9.5, power input in the range of 0.9 W ~ 4.2 W. For the enhancement of the cooling effectiveness, the upper and lower of vertical wall would give the better position for the heaters of higher heat flux.

Theoretical axial wall angulation for rotational resistance form in an experimental-fixed partial denture

  • Bowley, John Francis;Kaye, Elizabeth Krall;Garcia, Raul Isidro
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.278-286
    • /
    • 2017
  • PURPOSE. The aim of this study was to determine the influence of long base lengths of a fixed partial denture (FPD) to rotational resistance with variation of vertical wall angulation. MATERIALS AND METHODS. Trigonometric calculations were done to determine the maximum wall angle needed to resist rotational displacement of an experimental-FPD model in 2-dimensional plane. The maximum wall angle calculation determines the greatest taper that resists rotation. Two different axes of rotation were used to test this model with five vertical abutment heights of 3-, 3.5-, 4-, 4.5-, and 5-mm. The two rotational axes were located on the mesial-side of the anterior abutment and the distal-side of the posterior abutment. Rotation of the FPD around the anterior axis was counter-clockwise, Posterior-Anterior (P-A) and clockwise, Anterior-Posterior (A-P) around the distal axis in the sagittal plane. RESULTS. Low levels of vertical wall taper, ${\leq}10-degrees$, were needed to resist rotational displacement in all wall height categories; 2-to-6-degrees is generally considered ideal, with 7-to-10-degrees as favorable to the long axis of the abutment. Rotation around both axes demonstrated that two axial walls of the FPD resisted rotational displacement in each direction. In addition, uneven abutment height combinations required the lowest wall angulations to achieve resistance in this study. CONCLUSION. The vertical height and angulation of FPD abutments, two rotational axes, and the long base lengths all play a role in FPD resistance form.

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

Free Convective Heat Transfer in a Vertical Channel with Heat Source at the Wall (벽에서 열원이 있는 수직채널안의 자연대류열전달)

  • Pak, Hi-Yong;Doo, Min-Soo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.108-117
    • /
    • 1985
  • In this study, a numerical analysis was performed for the natural convection heat transfer in a vertical channel which was consisted of two finite-thickness vertical walls with heat source. The ratio of the thermal conductivity of wall to air played an important role in the analysis. The case for which one side wall has protrusion resistances was also examined. The governing equations for the system was discretized by control volume formulation and solved by SIMPLE method. As the result of this study, it was found that the uniform heat flux boundary condition could be applied when the conductivity ratio was below approximately 50 and the uniform temperature boundary condition could be used when the conductivity rat io was over approximately 15,000. However, when the conductivity ratio was between 50 and 15,000, the thermal conductivity ratio value should be considered for the analysis. It was also found that the existence of protrusion resistance influenced the thermal field up to the distance of 3-4 times of the protrusion length.

  • PDF

EFFECT OF INITIAL SALT CONCENTRATION ON THE FREEZING OF BINARY MIXTURE SATURATED PACKED BED (이원혼합용액의 초기농도가 동결에 미치는 영향에 관한 실험연구)

  • 최주열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.527-534
    • /
    • 1997
  • Freezing of an aqueous sodium cWoride solution (Nacl- H20) saturating a packed bed with ini¬tial salt concentrations of 5, 10, 15(k by weight is investigated experimentally in a rectangular cav¬ity. The system was cooled from the top, bottom and a vertical side wall. For the freezing experi¬ments from below, there was little effect of the initial salt concentration throughout the freezing process, and the global freezing rate was not affected by the initial salt concentration. For the freezing from above, the size of the mush region decreased and the mushlliquid interface became flatter as the initial liquid concentration is decreased. For the freezing from vertical side wall, reheating of the mixture was intensified with an increase in the initial salt concentration. For Ci= 5%, supercooling was observed only at the early times of freezing process, but for Ci= 15% small supercooling was observed throughout the freezing process.

  • PDF

A Case Study on the Improvement of the Beauty of Photovoltaic Generator : Focusing on the case of installation on the vertical side wall of a building (태양광 발전기의 심미성 향상을 위한 사례분석 연구 : 건물 수직 측벽에 설치되는 사례를 중심으로)

  • Lee, Jae-Hyun;Park, Ji-Hoon;Nam, Won-Suk;Jang, Jung-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.97-103
    • /
    • 2020
  • This study sets the solar power system installed and applied to the vertical side wall among the photovoltaic systems in the building as the scope of the research. The theoretical background was considered through literature research as a research method, and the current status, trends and characteristics of solar generator design installed and applied to domestic and foreign vertical side walls were then investigated and analyzed cases. As a result, the importance and necessity of photovoltaic generators, potential for power generation and growth were identified, and positive factors and directions were found for improving aestheticity. Based on this point, we would like to propose expected effects that can be applied to photovoltaic system design installed and applied to vertical side walls in the future, and confirm the direction and significance of the improvement of aesthetic quality of the proposal for development of thin film solar cell design technology using green facade design.

Natural Wall Systems-Esthetic View Element in a Downtown Facilities (기술사 마당 - 기술자료 - 도시시설물에서 미적(美的) 경관요소를 고려한 자연석 옹벽)

  • Cho, Kyoo-Yung;Roh, Keum-Too;Seo, Beom-Seok
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Retaining wall is a structure to stabilize the land slope as vertical retaining wall have constructed to make efficiency use of downtown area. Recently to commune with nature and refine a apartment and structure, natural friendly relations for retaining walls are tried to construct. The surface of the concrete walls are weave in various figures and colours, and in some places plant a shrub. Laying a landscape stone which have disclose a plane nature one means keeping up the natural slope, constructively safely set a anchor in front side and rear side wall between the natural stone, plant shrub or ground coverings to give shape into a rock. Natural stone is exposed of surface and planting the gardening, to be a type of natural friendly relations however that will be recycled. The size of blasted nature stone which is irregular become more natural type of one.

  • PDF

Structural Health Monitoring of Nuclear Containment Building Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 원자력발전소 격납건물의 구조 건전성 계측)

  • Lee, Seung-Hwan;Lee, Nam-Kwon;Lee, Geum-Seok;Lee, Hong-Pyo;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.71-75
    • /
    • 2013
  • Nuclear containment building is used as second blockage to protect us from a radiation leakage caused by the natural disaster or any accidents, so it's safety is important and must be kept with continuous surveillance. In this study, we measured the strain of a nuclear containment building's wall by using FBG sensor and investigated the structural safety of a nuclear containment building. 50 FBG strain sensors and 18 FBG strain sensors were attached on the side wall and upper dome of a nuclear containment building, respectively. We measured the strains of the outside concrete wall during the Structural Integrity Test (SIT) of a nuclear containment building. The strain of an upper dome was larger than that of a side wall, about $200{\mu}{\varepsilon}$. And the very small strain was measured at vertical direction of a side wall. These experimental results were used to evaluate the structural health of nuclear containment building.

Wave Reflection from Partially Perforated Wall Caisson Breakwater

  • K. D. Suh;Park, W. S.;Lee, D. S.
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.176-183
    • /
    • 1996
  • In order to reduce wave reflection from a breakwater, a perforated wall caisson is often used. A conventional perforated wall caisson breakwater for which the water depth inside the wave chamber is the same as that on the rubble mound berm has less weight than a vertical solid caisson with the same width and moreover the weight is concentrated on the rear side of the caisson. (omitted)

  • PDF