• Title/Summary/Keyword: Vertical pressure

Search Result 1,348, Processing Time 0.029 seconds

Heat Transfer Characteristics of an Internally-Heated Annulus Cooled with R-134a Near the Critical Pressure

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • An experimental study of heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) tests, and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with increase of the system pressure for fixed inlet mass flux and subcooling. The CHF falls sharply at about 3.8 MPa and shows a trend towards converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall, because the CHF occurs at remarkably low power levels. In the pressure reduction transients, as soon as the pressure passes below the critical pressure from the supercritical pressure, the wall temperatures rise rapidly up to very high values due to the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, and then tends to decrease gradually.

Laboratory Test and Field Study of Soft Ground Improvement Effect by Using Various PVDs (실내실험과 현장실험을 통한 다양한 PVD의 연약지반개량효과)

  • Shin, Eun-Chul;Nazarova, Zhanara
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.15-21
    • /
    • 2008
  • The advantages of prefabricated vertical drains over conventional sand drains include their relatively low costs, less disturbance to the soil mass, the easinees of installation, and their flexibility which ensures the integrity of the drains during installation. This study tested the change of discharge capacities with respect to the hydraulic gradients for each lateral pressure. From the test results, as increases the overburden pressure, the clay soil is being consolidated, and also lateral pressure to the PVD specimen is increased. Therefore, the discharge capacity is decreased. The size of opening space in the core of PVDs is proportionally related to the discharge capacity. The numerical analysis was performed with utilizing computer simulation with considering field conditions. The results of numerical analysis are compared well with the field measurements.

  • PDF

A Basic Analysis of Behavior of Rectangular Prestressed Pilecolumn I (사각 프리스트레스트 말뚝형 기둥 기초적 특성 사례 연구 I)

  • Chon, Kyungsu;Kim, Nagyoung;Chung, Kyuchung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.13-22
    • /
    • 2013
  • A substructure of bridges is very important structural element for safety and supporting not only vertical loads as dead load and live load but lateral loads as break load, wind load, seismic load, hydrostatic pressure and dynamic water pressure, lateral earth pressure, impulsive load, temperature change and load effect of temperature change, creep and shrinkage. Most of domestic bridges are reinforced concrete piers and have an effect on economy of bridge. Recently, understanding importance of substructure, we are getting more interested in new substructure system.

The Comparison of 'Knowledge of Result' and 'Knowledge of Performance' in the Children with Cerebral Palsy

  • Lee, Hye-Young;Lee, In-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.81-84
    • /
    • 2015
  • Purpose: The purpose of this study was to compare the effect of 'knowledge of result' and 'knowledge of performance', two types of extrinsic feedbacks, during the sit-to-stand movement in children with hemiplegic cerebral palsy. Methods: A total of ten children with hemiplegic cerebral palsy (ages 8 to 12 years) were recruited for the study. Subjects with hemiplegic cerebral palsy performed sit-to-stand movement in front of a mirror. Their performance was supervised and revised for normal movement by a pediatric physiotherapist. In the knowledge of the result, subjects performed sit-to-stand using a chair with an armrest in their mind with normal movement. In the knowledge of performance, subjects performed sit-to-stand under verbal instructions. Randomized cross over trials were used in this study. Main outcome measurements were as follows: mediolateral speed, anteroposterior speed, velocity moment, extent in mediolateral direction, extent in anteroposterior direction, and vertical distance of the center of pressure. Results: The mediolateral speed and extent of center of pressure was higher for 'knowledge of performance' in comparison with the other type of extrinsic feedbacks (p<0.05). The other parameters, including anteroposterior speed and extent, and vertical speed of the center of pressure, did not differ between the two types of extrinsic feedbacks (p>0.05). Conclusion: These findings suggested that training in sit-to-stand movement with 'knowledge of result' may result in better use of extrinsic feedback.

Experimental Study on the Reduction of the Discharge Capacity of Vertical Drains (연직배수재의 통수능력 저감요인 분석을 위한 실험적 연구)

  • Kim, Chan-Kee;Chae, Young-Su;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.3-10
    • /
    • 2005
  • This paper aims at investigating the characteristics of discharge capacity according to lateral pressure, hydraulic gradient and deformation of drain materials. A series of experiments were conducted to achieve this objective. In experiments, fiver drain boards as well as harmonica and castle types of drain boards were installed in a rubber membrane, and clay in sully was filled around them. The test results showed that the harmonica type of drain boards have the greatest discharge capacity comparing to castle and fiber drain boards. The results also indicated that the hydraulic gradient has more effect on reduction of discharge capacity than the lateral pressure.

  • PDF

Seismic performance evaluation of agricultural reservoir embankment based on overtopping prevention structures installation

  • Bo Ra Yun;Jung Hyun Ryu;Ji Sang Han;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.469-484
    • /
    • 2023
  • In this study, three types of structures-stepped gabion retaining walls, vertical gabion retaining walls, and parapets-were installed on the dam floor crest to prevent the overflow of deteriorative homogeneous reservoirs. The acceleration response, displacement behavior, and pore water pressure ratio behavior were compared and evaluated using shaking-table model tests. The experimental conditions were set to 0.154 g in consideration of the domestic standard and the seismic acceleration range according to the magnitude of the earthquake, and the input waveform was applied with Pohang, Gongen, and artificial earthquake waves. The acceleration response according to the design ground acceleration increased as the height of the embankment increased, and the observed value were larger in the range of 1.1 to 2.1 times the input acceleration for all structures. The horizontal and vertical displacements exhibited maximum values on the upstream slope, and the embankment was evaluated as stable and included within the allowable range for all waveforms. The settlement ratio considering the similarity law exhibited the least change in the case of the parapet structure. The amplification ratio was 1.1 to 1.5 times in all structures, with the largest observed in the dam crest. The maximum excess pore water pressure ratio was in the range of 0.010 - 0.021, and the liquefaction evaluation standard was within 1.0, which was considered very stable.

A study on evaluation of duplex loading pressure in Suction Drain Method (Suction Drain 공법에서 양방향 압력재하에 의한 효율 평가에 관한 연구)

  • Ahn, Dong-Wook;Chae, Kwang-Seok;Han, Sang-Jae;Yoon, Myung-Seok;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1256-1263
    • /
    • 2010
  • Suction Drain Method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the Vertical Drain Board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or Preloading Method. In this study, ground improvement efficiency of suction drain method was estimated when duplex loading pressure with vacuum and pressure. During suction drain method process, surface settlement and pore pressure were monitored, and cone resistance test as well as water content were also measured after the completion of Suction Drain Method treatment.

  • PDF

Analysis of Consolidation Characteristics of Soft Clay Based on Constant Pressure Ratio Consolidation Test (일정 압력비 압밀시험을 이용한 연약점토의 압밀특성 분석)

  • 김훈규;정두회
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.455-462
    • /
    • 2002
  • There exist several kinds of continuous consolidation tests to analyze the consolidation behavior of soft clay. The constant rate of strain (CRS) test has been adopted as a standard method by several countries, and some researches also have been peformed by domestic researchers. Among those, the constant pressure ratio (CPR) test is peformed with the constant ratio of excess porewater pressure to vertical effective stress. The test has the advantage of considerable reduction of duration time. In the study, the consolidation characteristics are analyzed by performing the CPR test as validate the pressure ratio with undisturbed soft clay and remolded clay, Also, results of the standard consolidation test and CRS test are compared to verify the CPR test can be employed for practical use. As a result, effects of variation of the pressure ratio on consolidation parameter are similar to the strain rate in the CRS test. Therefore, the test can be used to analyze the consolidation behavior of soft clay But the test have some problems such as expensive cost of equipment and highly skilled workmanship.

  • PDF

Comparison of Two Methods for Analyzing Stress-Strain Behavior of Soil Beam (지반보의 응력-변형률 거동에 대한 해석법 비교)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.294-302
    • /
    • 2018
  • To analyze the behavior of a soil beam under pore water pressure, the results of analytical solutions and finite element analysis (FEM) were compared quantitatively. In contrast to the results of the analytical solution, the horizontal stress obtained from the FEM did not show a symmetrical distribution. On the other hand, the horizontal stress became closer to symmetrical distribution as the number of elements of the soil beam were increased. A comparison of the horizontal stresses from the analytic solution with those obtained from Gaussian points of FEM showed that the magnitude of the tensile stress from the FEM using 3 elements was 6% of the maximum value of the analytical solution and the compressive stress from the FEM using the same elements was 37% of the maximum value of the analytical solution. The magnitude of the tensile stress from the FEM using 6 elements was 61% of the maximum value of the analytical solution and the magnitude of the compressive stress from the FEM using the elements was 83% of the maximum value of the analytical solution. Vertical stresses, which were obtained from the analytical solution, showed a continuous distribution with the depth of the soil beam, whereas the vertical stresses from the FEM showed a discrete distribution corresponding to each element. The results also showed that the average value of the vertical stresses of each element was close to that of the pore water pressure. A comparison of the vertical displacements computed at the near vertical center line of the soil beam from the FEM with those of the analytical solution showed that the magnitude of the vertical displacement from FEM using 3 elements was 35% of the value of the analytical solution and the magnitude of the vertical displacement from FEM using 6 elements was 57% of the value of the analytical solution.

Heat Transfer Characteristics of an Annulus Channel Cooled with R-134a Fluid near the Critical Pressure (임계압력 근처에서의 환형관 채널에 대한 열전달 특성 연구)

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2094-2099
    • /
    • 2004
  • An experimental study on heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with the increase of the system pressure For a fixed inlet mass flux and subcooling, the CHF falls sharply at about 3.8 MPa and shows a trend toward converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall because the CHF occurred at remarkably low power levels. In the pressure reduction transient experiments, as soon as the pressure passed through the critical pressure, the wall temperatures rise rapidly up to a very high value due to the occurrence of the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, then tends to decrease gradually.

  • PDF