• Title/Summary/Keyword: Vertical position-accuracy

Search Result 109, Processing Time 0.022 seconds

The influence of syllable frequency, syllable type and its position on naming two-syllable Korean words and pseudo-words (한글 두 글자 단어와 비단어의 명명에 글자 빈도, 글자 유형과 위치가 미치는 영향)

  • Myong Seok Shin;ChangHo Park
    • Korean Journal of Cognitive Science
    • /
    • v.35 no.2
    • /
    • pp.97-112
    • /
    • 2024
  • This study investigated how syllable-level variables such as syllable frequency, syllable (i.e. vowel) type, presence of final consonants (i.e. batchim) and syllable position influence naming of both words and pseudo-words. The results of the linear mixed-effects model analysis showed that, for words, naming time decreased as the frequency of the first syllable increased, and when the first syllable had a final consonant. Additionally, words were named more accurately when they had vertical vowels compared to horizontal vowels. For pseudo-words, naming time decreased and accuracy rate increased as the frequency of the first or the second syllable increased. Furthermore, pseudo-words were named more accurately when they had vertical vowels compared to horizontal vowels. These results suggest that while the frequency of the second syllable had differential effects between words and pseudo-words, the frequency of the first syllable and the syllable type had consistent effects for both words and pseudo-words. The implications of this study were discussed concerning visual word recognition processing.

Flying-wing Type Compound Drone Design and Mission Accuracy Analysis (전익기형 복합드론의 설계 및 임무 정확도 연구)

  • Sung, Dong-gyu;Koh, Eun-hak;Kim, Ju-chan;Nam, Yong-hyeon;Lee, Jeong-ho;Lee, Jae-seung;Lee, Chan-bin;Jeon, Yeong-bae;Choi, Cheol-kyun;Lee, Jae woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.122-128
    • /
    • 2018
  • A compound drone that combines a fixed wing and a rotary wing is an aircraft that can take off and landing vertically, and can increase flight time and fly faster with fixed wings. The compound drones are divided into many types depending on the method of adding the thrust vectoring or the lift fan and the position of the rotor. In this study, we designed and fabricated a composite drone with four V-TOL motors in a fixed-wing, and assigned missions to the aviation body, hence judged mission accuracy using the actual flight test. The design process and the mission evaluation process employed in this study can be utilized on the development of various unmanned aerial vehicle.

Generation and Comparison of 3-Dimensional Geospatial Information using Unmanned Aerial Vehicle Photogrammetry Software (무인항공사진측량 소프트웨어를 이용한 3차원 공간정보 생성 및 비교)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.427-439
    • /
    • 2019
  • Purpose: We generated geospatial information of unmanned aerial vehicle based on various SW and analyzed the location accuracy of orthoimage and DSM and texture mapping of 3D mesh. Method: The same unmanned aerial image data is processed using two different SW, and spatial information is generated. Among the generated spatial information, the orthoimage and DSM were compared with the spatial information generation results of the unmanned aerial photogrammetry SW by performing quantitative analysis by calculating RMSE of horizontal position and vertical position error and performing qualitative analysis. Results: There were no significant differences in the positional accuracy of the orthoimage and DSM generated by each SW, and differences in texture mapping in 3D mesh. The creation of the 3D mesh indicated the impact of the Unmanned Aerial Photogrammetry SW. Conclusion: It is shown that there is no effect of SW on the creation of orthoimage and DSM for geospatial analysis based on unmanned aerial vehicle. However, when 3D visualization is performed, texture mapping results are different depending on SW.

Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity.modulated Radiation Therapy (세기조절방사선치료 시 콘빔CT (CBCT)를 이용한 환자자세 검증 및 보정평가)

  • Do, Gyeong-Min;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. Materials and Methods: The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. Results: When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07o in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. Conclusion: By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and correct the change of position and target volume and treat more accurately, and could calculate and compare the errors. The results of this study show that CBCT was useful to deliver accurate treatment according to the treatment plan and to increase the reproducibility of repeated treatment, and satisfactory results were obtained. Accuracy enhanced through CBCT is highly required in IMRT, in which the shape of the target volume is complex and the change of dose distribution is radical. In addition, further research is required on the criteria for match focus by treatment site and treatment purpose.

  • PDF

Precise Rectification of Misaligned Stereo Images for 3D Image Generation (입체영상 제작을 위한 비정렬 스테레오 영상의 정밀편위수정)

  • Kim, Jae-In;Kim, Tae-Jung
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.411-421
    • /
    • 2012
  • The stagnant growth in 3D market due to 3D movie contents shortage is encouraging development of techniques for production cost reduction. Elimination of vertical disparity generated during image acquisition requires heaviest time and effort in the whole stereoscopic film-making process. This matter is directly related to competitiveness in the market and is being dealt with as a very important task. The removal of vertical disparity, i.e. image rectification has been treated for a long time in the photogrammetry field. While computer vision methods are focused on fast processing and automation, photogrammetry methods on accuracy and precision. However, photogrammetric approaches have not been tried for the 3D film-making. In this paper, proposed is a photogrammetry-based rectification algorithm that enable to eliminate the vertical disparity precisely by reconstruction of geometric relationship at the time of shooting. Evaluation of proposed algorithm was carried out by comparing the performance with two existing computer vision algorithms. The epipolar constraint satisfaction, epipolar line accuracy and vertical disparity of result images were tested. As a result, the proposed algorithm showed excellent performance than the other algorithms in term of accuracy and precision, and also revealed robustness about position error of tie-points.

A Study on the Improvement Method for Preventing Lift Stop Position Error using Double Sensor Based Lift Stop Sensing Device (Double Sensor Type 감지장치를 통한 리프트 정지위치 오차누적 개선 방안 제안)

  • Lee, Jong-Hyun;Kwon, Soon-Wook;Park, Sung-Ung;Lee, Mi-Na
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.2
    • /
    • pp.110-119
    • /
    • 2012
  • The Plan and equipment of vertical lifting are very important in high-rise building construction site, and unmanned lifts usage is increasing for financial and efficient reason. However if lift stop position error occur, It can be accumulated. And the lift can not be available during an engineer fix the problem. So loss of time and cost will occur when lifts have problems. This paper reports an improved lift stop position sensing device for preventing loss of time and cost from lift stop position error. The result of tests showed that the system has a correction function of lift stop position error, and the accuracy of device which was developed in this paper was about 9.75mm better than existing equipment.

A Comparative Analysis between Rigorous and Approximate Approaches for LiDAR System Calibration

  • Kersting, Ana Paula;Habib, Ayman
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.593-605
    • /
    • 2012
  • LiDAR systems provide dense and accurate topographic information. A pre-requisite to achieving the potential accuracy of LiDAR is having a proper system calibration, which aims at estimating all the systematic errors in the system measurements and the mounting parameters relating the different components. This paper presents a rigorous and two approximate methods for LiDAR system calibration. The rigorous approach makes use of the LiDAR equation and the system raw measurements. The approximate approaches utilize simplified LiDAR equations using some assumptions, which allow for less strict requirements regarding the raw measurements. The first presented approximate method, denoted as quasi-rigorous, assumes that we are dealing with a vertical platform (i.e., small pitch and roll angles). This method requires time-tagged point cloud and trajectory position data. The second approximate method, denoted as simplified, assumes that we are dealing with parallel strips, vertical platform, and minor terrain elevation variations compared to the flying height above ground. Such method can be performed using the LiDAR point cloud only. Experimental results using a real dataset, whose characteristics deviate to some extent from the utilized assumptions in the approximate methods, are presented to provide a comparative analysis of the outcome from the introduced methods.

A Study on the Use of Drones for Disaster Damage Investigation in Mountainous Terrain (산악지형에서의 재난피해조사를 위한 드론 맵핑 활용방안 연구)

  • Shin, Dongyoon;Kim, Dajinsol;Kim, Seongsam;Han, Youkyung;Nho, Hyunju
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1209-1220
    • /
    • 2020
  • In the case of forest areas, the installation of ground control points (GCPs) and the selection of terrain features, which are one of the unmanned aerial photogrammetry work process, are limited compared to urban areas, and safety problems arise due to non-visible flight due to high forest. To compensate for this problem, the drone equipped with a real time kinematic (RTK) sensor that corrects the position of the drone in real time, and a 3D flight method that fly based on terrain information are being developed. This study suggests to present a method for investigating damage using drones in forest areas. Position accuracy evaluation was performed for three methods: 1) drone mapping through GCP measurement (normal mapping), 2) drone mapping based on topographic data (3D flight mapping), 3) drone mapping using RTK drone (RTK mapping), and all showed an accuracy within 2 cm in the horizontal and within 13 cm in the vertical position. After evaluating the position accuracy, the volume of the landslide area was calculated and the volume values were compared, and all showed similar values. Through this study, the possibility of utilizing 3D flight mapping and RTK mapping in forest areas was confirmed. In the future, it is expected that more effective damage investigations can be conducted if the three methods are appropriately used according to the conditions of area of the disaster.

In vitro comparison of the accuracy of an occlusal plane transfer method between facebow and POP bow systems in asymmetric ear position

  • Dae-Sung Kim;So-Hyung Park;Jong-Ju Ahn;Chang-Mo Jeong;Mi-Jung Yun;Jung-Bo Huh;So-Hyoun Lee
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.5
    • /
    • pp.271-280
    • /
    • 2023
  • PURPOSE. This in vitro study aimed to compare the accuracy of the conventional facebow system and the newly developed POP (PNUD (Pusan National University Dental School) Occlusal Plane) bow system for occlusal plane transfer in asymmetric ear position. MATERIALS AND METHODS. Two dentists participated in this study, one was categorized as Experimenter 1 and the other as Experimenter 2 based on their clinical experience with the facebow (1F, 2F) and POP bow (1P, 2P) systems. The vertical height difference between the two ears of the phantom model was set to 3 mm. Experimenter 1 and Experimenter 2 performed the facebow and POP bow systems on the phantom model 10 times each, and the transfer accuracy was analyzed. The accuracy was evaluated by measuring the angle between the reference virtual plane (RVP) of the phantom model and the experimental virtual plane (EVP) of the upper mounting plate through digital superimposition. All data were statistically analyzed using a paired t-test (P < .05). RESULTS. Regardless of clinical experience, the POP bow system (0.53° ± 0.30 (1P) and 0.19° ± 0.18 (2P) for Experimenter 1 and 2, respectively) was significantly more accurate than the facebow system (1.88° ± 0.50 (1F) and 1.34° ± 0.25 (2F), respectively) in the frontal view (P < .05). In the sagittal view, no significant differences were found between the POP bow system (0.92° ± 0.50 (1P) and 0.73° ± 0.42 (2P) for Experimenter 1 and 2, respectively) and the facebow system (0.82° ± 0.49 (1F) and 0.60° ± 0.39 (2F), respectively), regardless of clinical experience (P > .05). CONCLUSION. In cases of asymmetric ear position, the POP bow system may transfer occlusal plane information more accurately than the facebow system in the frontal view, regardless of clinical experience.

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.