• Title/Summary/Keyword: Vertical grounding electrode

Search Result 11, Processing Time 0.029 seconds

Analysis for the Grounding Impedance of Vertical Grounding Electrodes using the Distributed Parameter Circuit Model (분포정수회로모델을 이용한 수직 접지전극의 접지임피던스의 분석)

  • Lee, Bok-Hee;Kim, Jong-Ho;Choi, Jong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1103-1108
    • /
    • 2010
  • A grounding electrode has the transient grounding impedance characteristics against lightning surges. So the performance of grounding electrodes should be evaluated as a grounding impedance as well as the ground resistance. The frequency-dependent grounding impedance is varied with the shape and size of grounding electrode and is divided into both inductive and capacitive behaviors. This paper presents a theoretical analysis for the grounding impedance determined by the size of grounding electrode using the distributed parameter circuit model. EMTP and Matlab programs were used in calculating the frequency-dependent grounding impedances of vertical grounding electrodes. It was found that the frequency-dependent grounding characteristics of vertical grounding electrodes are characterized by the distributed parameters which are changed in the dimension of grounding electrodes.

Computation of Critical Length for Vertical Grounding Electrode and Counterpoise (수직접지전극의 임계길이 산정)

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Li, Feng;Lee, Seung-Ju;Kim, Jong-Ho;Lee, Gang-Su;Kim, Ki-Bok;Kim, Tae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1491_1492
    • /
    • 2009
  • The impedance of a vertical grounding electrode is not lowered by expanding the dimension of the grounding electrode, and the length of thr vertical grounding electrode which shows the minimum value of the grounding impedance for each condition of frequency and soil characteristics is existent, and it is defined as Critical length. In this paper, the critical lengths for the vertical grounding electrodes are calculated by using the distributed parameter circuit model. The adequacy of the simulations has been confirmed by comparing the simulated results with the measured results.

  • PDF

The Variations of Grounding Resistance of the Vertical Electrodes by Soil Models (대지구조 모델에 따른 봉형 접지전극의 접지저항값 변화)

  • Shim, Keon-Bo;Kim, Won-Bae;Seo, Gil-Mo;Cho, Geum-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.57-63
    • /
    • 2012
  • The basic purpose of grounding is for human safety and normal operation of system related to electrical shock hazard by faults of electrical equipments. A grounding electrode is defined as a conducting element that connects electrical systems and/or equipment to the earth. The lowest possible resistance connection to the earth is sought from the grounding electrode. The grounding electrode is the foundation of the electrical safety system. The resistance to ground of vertical electrodes buried in the two deference soil structures has been analyzed for a length of electrodes and soil parameters. The equation of ground resistance of vertical electrodes are Tagg's equation for uniform soil models, and modified equation of Dwight equation for two-layer soil model. In this paper, compared with results of two equations are calculated values of vertical electrode in uniform and two-layer soil models.

Frequency-Dependant Grounding Impedances According to the Length of Grounding Electrode and the Joint Position of Ground Conductors (접지전극의 길이 및 접지도선의 접속위치에 따른 접지임피던스의 주파수의존성)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Cho, Sung-Chul;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.37-43
    • /
    • 2010
  • When lightning surges with wide frequency spectrum and power converting devices are considered, it is desirable to evaluate grounding system performance by grounding impedances. This paper presents the measured results for frequency-dependent grounding impedance for the vertical grounding electrode and counterpoise on a scale of full size. Grounding impedances of vertical grounding electrodes and counterpoises give capacitive or inductive behaviors according to the length of grounding electrodes and soil resistivity. It is inefficient to extend the length of the grounding electrode in order to decrease the ground resistance, and when designing the grounding system, the consideration of the grounding impedance should be desirable. In order to reduce the grounding impedance of counterpoise, the grounding conductors are jointed at the center of counterpoises. It is effective to reduce the grounding impedance by connecting ground rods to counterpoises in parallel.

Computation of the Critical Lengths of the Vertical Grounding Electrode in Multi-Layered Soil Structures (다층 대지구조에서 수직 접지전극의 임계길이 산정)

  • Kim, Ki-Bok;Joe, Jeong-Hyeon;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • The grounding impedance is not lowered by expanding the dimension of the grounding electrode, and the length of grounding electrode which shows the minimum value of the grounding impedance for each condition of frequency and soil characteristics is existent, and it is defined as Critical Length. In this paper, a new distributed parameter circuit model considering the condition of the multi-layered soil structures was proposed, and the grounding impedance and critical length of the vertical grounding electrode were analyzed by using the newly proposed simulation model and the MATLAB program. As a consequence, it was found that the effect of the soil structure on the frequency-dependent grounding impedance and critical length of the vertical grounding electrode is significant. It is desirable to consider the soil structure in optimal design of the grounding system.

Characteristics of Potential Gradient for the Type of Structure Grounding Electrode (구조체 접지전극의 유형에 따른 전위경도 특성)

  • Gil Hyung-Jun;Choi Chun-Seog;Kim Hyang-Kon;Lee Bok-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.8
    • /
    • pp.371-377
    • /
    • 2005
  • This paper Presents the Potential gradient characteristics of structure grounding electrode when a test current flows through grounding electrode. In order to analyze the potential gradient of ground surface on structure grounding electrode, the reduced scale model has been used. The potential gradient has been measured and analyzed for types of structure using the hemispherical grounding simulation system in real time. The structures were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. The supporter was made to put up with weight of structure and could move into vertical, horizontal, rotary direction. When a test current flowed through structure grounding electrodes, ground potential rise was the lowest value at electric cage type(type B). According to resistivity and absorption percentage In concrete attached to structure, the potential distribution of ground surface appeared differently.

The Analysis of Structure Grounding Using Reduced Scale Model (축소모델을 이용한 구조체 접지 분석)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Han, Woon-Ki;Lee, Ki-Yeon;Choi, Chung-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2046-2048
    • /
    • 2005
  • This paper deals with ground potential rise of structure grounding electrode when a test current flows through grounding electrode. In order to analyze the potential gradient of ground surface on structure grounding electrode, the reduced scale model has been used. The structures were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. The supporter was made to put up with weight of structure and could move into vertical, horizontal, rotary direction. When a test current flowed through structure grounding electrodes, ground potential rise was the lowest value at electric cage type(type B). According to resistivity and absorption percentage in concrete attached to structure, the potential distribution of ground surface appeared differently.

  • PDF

An Analysis of Potential Interference Effects in the Vicinity of Ground Rod Depending on Frequency of Ground Currents (접지전류의 주파수에 따른 수직 접지전극 주변에서 전위간섭 영향 분석)

  • Lee, Bok-Hee;Cho, Yong-Seung;Choi, Jong-Hyuk;Yang, Soon-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.88-93
    • /
    • 2011
  • When the ground current is injected into the adjacent ground electrode, the potential interference is caused between ground electrodes, the ground potential interferences have been largely studied with power frequency fault currents. Many attempts to find the frequency-dependent grounding impedance report that the high frequency grounding impedance is very different with the ground resistance. This paper presents experimental data on the frequency-dependent potential interference effects in the vicinity of ground rod. The ground potential rises around the test ground rod of 4 or 6[m] were measured and discussed. As a result, the ground potential rises and potential interference factor are decreased with decreasing the grounding impedance. It was found that the lowering of grounding impedance is critical to reduce the ground potential interference effects.

An Analysis of the Ground Potential Rises and Dangerous Voltages Associated with the Frequency of Ground Currents (접지전류의 주파수에 따른 대지표면전위 상승 및 위험전압의 분석)

  • Choi, Jong-Hyuk;Cho, Yong-Sung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.97-103
    • /
    • 2011
  • The most important object of grounding systems is to protect human being from electric shock. Touch and step voltages are measured to evaluate the performances of grounding systems. Dangerous voltages have been largely studied by the power frequency fault currents, on the other hand, the ground current containing the high frequency components and surge currents haven't been considered. Many attempts about the grounding impedances reported in these days show that the performance of the grounding systems in high frequency range is very different with the ground resistance. It is necessary to analyze the dangerous voltages formed by the ground currents containing high frequency components. In this paper, the ground surface potential rises near the vertical and horizontal grounding electrodes are measured at the frequency of 100[Hz], 30[kHz], and 100[kHz]. Dangerous voltages are investigated with the frequency-dependent grounding impedance. As a result, the ground surface potential rise is increased as the grounding impedance increases. Touch and step voltages near the grounding electrode whose impedance increases with the frequency are sharply raised.

Lightning impulse characteristics of large-scale ground rods (대형 봉상 접지전극의 뇌 임펄스 특성)

  • Lee, B.H.;Chang, K.C.;Lee, D.M.;Jeong, D.C.;Lee, S.C.;Ahn, C.H.;Jeong, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1849-1851
    • /
    • 2003
  • To obtain a low ground resistance in high resistivity soil, long vertical ground rods are often used. However, if the lightning current or fault current with high frequency flow into the grounding system, the ground impedance is significantly increased because of the inductive behavior. This paper presents how the impulse current works on the long vertical ground electrodes. The different shape of current was impressed between ground rods and auxiliary electrode by using impulse generator and the ground impedance was calculated from the ground potential rise.

  • PDF