• Title/Summary/Keyword: Vertical feed

Search Result 82, Processing Time 0.034 seconds

Production of Carbonized Rice Husk by a Cyclone Combustor(II) (사이클론 연소기를 이용한 탄화왕겨의 제조(II))

  • 김원태;노수영
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.487-492
    • /
    • 1999
  • One of effective utilization method of rice husk is to utilize it as culture material by carbonizing the rice husk. As a second part of a series to investigate the effective and continuous production of carbonized rice husk by a cyclone combustor, a non-slagging vertical cyclone combustor without vortex collector pocket was introduced. Isothermal and mixed firing with LPG and rice husk were undertaken in order to characterize the system. Inert rice husk was used during the isothermal test to find mass of rice husk collected. It was impossible to ignite rice husk itself over the experimental conditions considered in this experiment. Cyclone combustor was operated at temperatures of 1,273~1,473K. Detailed combustion data were obtained from a pilot unit with the air flow rate of 70m$^3$/h and rice husk feed of 2kg. The equivalence ratio ranged from 0.66 to 3.48. The auxiliary gas flow rate was varied from 3.22 to 12.86$\ell$/min. The weight reduction, pH and particle size distribution of carbonized rice husk were measured to evaluate the quality of carbonized rice husk. An analysis of exhaust gas emission was conducted to characterize the combustor. The required carbonized rice husk could be obtained at equivalence ratio of 1.68~2.17, combustor temperature of 1,273~1,373K and auxiliary gas flow rate of 3.22~6.43$\ell$/min. A method to reduce CO emissions should be employed.

  • PDF

A Study on Velocity Profiles between Two Baffles in a Horizontal Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.136-142
    • /
    • 2015
  • The shell and tube heat exchanger is an essential part of a power plant for recovering transfer heat between the feed water of a boiler and the wasted heat. The baffles are also an important element inside the heat exchanger. Internal materials influence the flow pattern in the bed. The influence of baffles in the velocity profiles was observed using a three-dimensional PIV (Particle Image Velocimetry) around baffles in a horizontal circular tube. The velocity of the particles was measured before the baffle and between them in the test tube. Results show that the velocity vectors near the front baffle flow along the vertical wall, and then concentrate on the upper opening of the front baffle. The velocity profiles circulate in the front and rear baffle. These profiles are related to the Reynolds number (Re) or the flow intensity. Velocity profiles at lower Re number showed complicated mixing to obtain the velocities and concentrate on the lower opening of the rear baffle as front wall. Numerical simulations were performed to investigate the effects of the baffle and obtain the velocity profiles between the two baffles. In this study, a commercial CFD package, Fluent 6.3.21 with the turbulent flow modeling, k-${\epsilon}$ are adopted. The path line and local axial velocities are calculated between two baffles using this program.

A Study on Kinematics Modeling and Motion Control Algorithm Development in Joint for Vertical Type Articulated Robot Arma (수직다관절형 아암의 운동학적 모델링 및 관절공간 모션제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Yang, Jun-Seok;Won, Jong-Beom;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2016
  • In this paper, we propose a new technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot manipulator with eight joints. joint space and cartesian space.

Design and Properties Related to Anti-reflection of 1.3μm Distributed Feedback Laser Diode (1.3μm 분포 괴환형 레이저 다이오드의 무반사 설계 및 특성)

  • Ki, Hyun-Chul;Kim, Seon-Hoon;Hong, Kyung-Jin;Kim, Hwe-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.248-251
    • /
    • 2009
  • We have investigated the effect of the quality of 1.3 um distributed feed back laser diode (DFB-LD) on the design of anti-reflection (AR) coatings. Optimal condition of AR coating to prevent internal feedback from both facets and reduce the reflection-induced intensity noise of laser diode was simulated with Macleod Simulator. Coating materials used in this work were ${Ti_3}{O_5}$ and $SiO_2$, of which design thickness were 105 nm and 165 nm, respectively. AR coating films were deposited by Ion-Assisted Deposition system. The electrical and optical properties of 1.3 um laser diode were characterized by Bar tester and Chip tester. Threshold current and slop-efficiency of DFB-LD were 27.56 mA 0.302 W/A. Far field pattern and wavelength of DFB-LD were $22.3^{\circ}(Horizontal){\times}24.4^{\circ}$ (Vertical), 1313.8 nm, respectively.

Changes in the Specific Gravity of Pacific Cod Gadus macrocephalus, During the Early Life Stages (대구(Gadus macrocephalus)의 초기 발생시기의 비중변화)

  • Lee, Hwa Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.3
    • /
    • pp.332-337
    • /
    • 2018
  • The Pacific cod Gadus macrocepahlus, lays demersal eggs and the hatching larvae rise toward the surface layer of the ocean to feed. The change in the specific gravity of eggs and larvae was investigated to examine their vertical distribution and movement in the water column. The specific gravities of fertilized eggs and various size classes of larvae were measured using a density gradient apparatus. In total, the instantaneous specific gravity of 146 eggs and 225 larvae were measured. To prevent any disturbance in the gradient water column due to larval movement, 0.004% MS222 was used for anesthesia. Due to their high specific gravity, eggs spawned were deposited over the sea-bed of the spawning ground. The specific gravity of hatching larvae decreased abruptly. However, Pacific cod larvae still had a comparatively high specific gravity at hatching ($1.03655{\pm}0.00146g/cm3$, n=4, mean SL=3.62 mm) and their specific gravities tended to decrease as they grew. The specific gravity stabilized 6 days after hatching ($1.02590{\pm}0.00212g/cm3$, n=15, mean SL=4.67 mm) and the cod larvae were eventually able to float in the water column.

Sewage Disposal by Different Structure of Fluidized Bed Biofilm Reactor (유동층 생물반응기의 구조변화에 따른 하수처리)

  • Park, Jong-Man;Lee, Jae-Yong;Kim, Chul-Kyoung;Koh, Chang-Woong;Kim, Nam-Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.181-187
    • /
    • 2004
  • The purpose of this study is to investigate the biofilm reactors capable of doing high efficiency treatment. Vertical fluidized bed biofilm reactor(VFBBR) and spiral fluidized bed biofilm reactor(SFBBR) was used for their performence in biodegradation of artificial sewage. The factors influencing the efficiency of those reactors were compared with difference of physical condition. They had same size but different structure to gain access of its unique characteristics. When recycle solution with flow rate of 22 mL/min and artificial sewage with flow rate of 2~10 mL/min were fed into two reactors in aerobic state, the average $COD_{cr}$, removal rate for biodegradation of SFBBR was greater than VFBBR. After reactor feed sewage was constantly maintained as flow rate of 4 mL/min and the recycle solution were changed to 10~32 mL/min respectively, the average $COD_{cr}$ removal rate of artificial sewage in SFBBR was greater than VFBBR. In this experiment for addition of support media into two reactors SFBBR was 4.1% excellent than VFBBR. Above all, SFBBR excelled VFBBR in boidegradation of organic matter in sewage.

Formation of YSZ Coatings Deposited by Suspension Vacuum Plasma Spraying (서스펜션 진공 플라즈마 용사법을 통한 YSZ 코팅의 형성)

  • Yoo, Yeon Woo;Byon, Eungsun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.460-464
    • /
    • 2017
  • As increasing thermal efficiency of the gas turbine, the performance improvement of thermal barrier coatings is also becoming important. Ytrria stabilized zirconia(YSZ) is the most popular materials for ceramic top coating because of its low thermal conductivity. In order to enhance the performance of thermal barrier coatings for hot sections in the gas turbine, suspension plasma spraying was developed in order to feed nano-sized powders. YSZ coatings formed by suspension plasma spraying showed better performance than YSZ coatings due to its exclusive microstructure. In this research, two YSZ coatings were deposited by suspension vacuum plasma spraying at 400 mbar and 250 mbar. Microstructures of YSZ coatings were analyzed by scanning electron image(SEM) on each spraying conditions, respectively. Crystalline structure transformation was not detected by X-ray diffraction. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings were measured by laser flash analysis. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings containing horizontally oriented nano-sized pores and vertical cracks showed $0.6-1.0W/m{\cdot}K$, similar to thermal conductivity of YSZ coatings formed by atmospheric plasma spraying.

A Study on Multi-Fault Diagnosis for Turboshaft Engine of UAV Using Fuzzy and Neural Networks (퍼지 및 신경망을 이용한 무인 항공기용 터보축 엔진의 다중손상진단에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Koo, Young-Ju;Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.556-561
    • /
    • 2009
  • The UAV(Unmanned Aerial Vehicle) that is remotely operating in various and long flight environments must have a very reliable propulsion system. Precise fault diagnosis of the turbo shaft engine for the Smart UAV that has the vertical take-off, landing and forward flight behaviors can promote reliability and availability. This work proposes a new diagnostic method that can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. The proposed diagnostic method can detect not only single fault but also multiple faults.

Thermal-hydraulic study of air-cooled passive decay heat removal system for APR+ under extended station blackout

  • Kim, Do Yun;NO, Hee Cheon;Yoon, Ho Joon;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.60-72
    • /
    • 2019
  • The air-cooled passive decay heat removal system (APDHR) was proposed to provide the ultimate heat sink for non-LOCA accidents. The APDHR is a modified one of Passive Auxiliary Feed-water system (PAFS) installed in APR+. The PAFS has a heat exchanger in the Passive Condensate Cooling Tank (PCCT) and can remove decay heat for 8 h. After that, the heat transfer rate through the PAFS drastically decreases because the heat transfer condition changes from water to air. The APDHR with a vertical heat exchanger in PCCT will be able to remove the decay heat by air if it has sufficient natural convection in PCCT. We conducted the thermal-hydraulic simulation by the MARS code to investigate the behavior of the APR + selected as a reference plant for the simulation. The simulation contains two phases based on water depletion: the early phase and the late phase. In the early phase, the volume of water in PCCT was determined to avoid the water depletion in three days after shutdown. In the late phase, when the number of the HXs is greater than 4089 per PCCT, the MARS simulation confirmed the long-term cooling by air is possible under extended Station Blackout (SBO).

A Study on the Cutting Characteristics of SCM440, SNCM21, STS 304 in Cryogenic Cutting(1st Report) (난삭재의 극저온절삭에서의 절삭 특성에 관한 연구)

  • Kim, Chill-Su;Oh, Sun-Sae;Lim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • We experimented on cutting characteristics-cutting force, behavior of cutting temprature, surface foughness, behavior of chips-under low tempdeature, which generated by liquid nitrogen (77K). The workpieces were freezed to -195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to increase the efficiency of machining in low temperature. The workpiece was became to -195 .deg. C in 5 minutes, and cutting temperature in CC was lower about 170 .deg. C than NC. The cutting force trended to increase slighty in cooled cutting, but chip thickness was decreased, shear angle was however increased. The form of chips was in good conditions of long or short tubular chips in CC. In CC surface roughness of workpiece was better than NC. In NC surface hardness of chips trended to increase according to increasing of cutting speed, but in CC it trended to decrease. The power spectrum of vertical cutting force trended to increase according to increasing of feed, and in CC it was higher than NC.

  • PDF