• Title/Summary/Keyword: Vertical design method

Search Result 957, Processing Time 0.051 seconds

Wave Forces Acting on Vertical Cylinder and Their Wave Transformations by 3-Dimensional VOF Method (3차원 VOF법에 의한 연직 주상구조물에 작용하는 파력과 구조물에 의한 파랑변형 해석)

  • Lee, Kwang-Ho;Lee, Sang-Ki;Sin, Dong-Hoon;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.12-21
    • /
    • 2007
  • As the economy grows and the population increases, we need to develop our coastal area and make use of it for various purposes. Specifically, investigation of the wave interactions on and around the vertical cylinders is very important in the design of the offshore or coastal structures. The nonlinear potential analysis developed so far, although very useful, has been found to be limited in application, as strong nonlinear waves generated by the interference between multilayered cylinders and wave impact forces by breaking waves can hardly be estimated. In this study, using a 3-Dimensional volume tracking method VOF(Volume of Fluid), based on Namer-Stokes equations, was developed to simulate highly nonlinear effects, such as breaking waves at the interface or complicated interference waves among structures. A numerical method for nonlinear interaction wave and vertical cylinders is newly proposed. The wave forces and wave transformations computed by the newly proposed numerical simulation method were compared to the other researcher's experimental results, and the results agree well. Based on the validation of this study, this numerical method is applied to the two vertical cylinders to discuss their nonlinear wave forces and wave transformations, according to the variations of separate distance of vertical cylinders.

Characteristics of the Smear Zone by Vertical Drain of Low Plasticity on Soft Ground (저소성 연약지반에서의 스미어 존 특성 평가)

  • Kang, Yun;Baek, Sungchul;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.27-33
    • /
    • 2007
  • The vertical drain method recently being used in Korea is one of the popular soft ground improvement methods, and it is divided into the sand drain method, the pack drain method, the paper drain method, and the PBD method according to the drainage. However, these methods generate the disturbed zone called the smear zone when the drainage is penetrated into the in-situ ground. The characteristics of the smear zone generated cause the problems that the coefficient of permeability decreases, and then the consolidation time in the design becomes longer than expected. Even though the coefficient of horizontal consolidation and the coefficient of permeability in the smear zone are very important design factors directly influencing the degree of consolidation, in the existing studies, these coefficients have been empirically derived by the coefficient of vertical consolidation and used for the design. However, in case that these coefficients derived by the coefficient of vertical consolidation are applied to the actual design, a loss of the duration of construction and a loss of economical efficiency can be happened because of the inaccuracy of the coefficient of horizontal consolidation and the coefficient of permeability. Hence, in this study, in order to understand such influence, the laboratory test was carried out so as to reasonably determine the coefficient of permeability and the coefficient of consolidation in diverse ground conditions. Then, the range of smear effect on clay and silt was estimated with monitoring data through the laboratory test.

  • PDF

Aerodynamic and Structural Design of 6kW Class Vertical-Axis Wind Turbine (6kW급 수직축 풍력발전기 형상 및 구조설계)

  • Kim, Dong-Hyun;Choi, Hyun-Chul;Lee, Jong-Wook;Ryu, Gyeong-Joong;Kim, Sung-Bok;Kim, Kwang-Won;Nam, Hyo-Woo;Lee, Myoung-Goo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.52-58
    • /
    • 2011
  • In this study, the design and verification of 6 kW class lift-type vertical-axis wind turbine (VAWT) has been conducted using advanced CAE technique based on computational fluid dynamics (CFD), finite element method (FEM), and computational structural dynamics (CSD). Designed aerodynamic performance of the VAWT model is tested using unsteady CFD method. Designed structural safety is also tested through the evaluation of maximum induced stress level and resonance characteristics using FEM and CSD methods. It is importantly shown that the effect of master eccentricity due to rotational inertia needs to be carefully considered to additionally investigate dynamic stress and deformation level of the designed VAWT system.

Consolidation Behavior of Soft Ground by prefabricated Vertical Drains (연직드레인 공법에 의한 연약지반의 압밀거동)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.133-143
    • /
    • 2000
  • A large scale field test of prefabricated vertical drains was performed to anayze the effect of parameters of the very soft clay at a test site. compression index and the coefficient of horizontal consolidation obtained by back-analysis of settlement data were compared with those obtained by means of laboratory tests. Hyperbolic method, Asaoka meoth and curve fitting method were used to compute final settlement of coefficient of consolidation. The relationships of settlement measurement(Sm) versus design settlement(St) and the measurement consolidation ratio(Um) versus design consolidation (Ut) were shown as Sm=(1.0~1.1) St , Um=(1.13~1.17) Ut at 1.0m spacing of drain and Sm=(0.7~0.8)St, Um= (0.92~0.99) Ut at 1.5 m spacing of drain, respectively . The relationships of the field compression index(CcField) and virgin compression index(vcc lab) were shown as Ccfield =(1.0~1.2)vcc lab . But it was nearly within the same range when considering the error factor with the determination method of virgin compression index and the prediction back-analysis of the settlement data was larger than the coefficient of vertical consolidation, and the ratio of consolidation coefficient (Ch/Cv) was Ch =(2.4~2.9) Cv , Ch=(3.4~4.2) Cv at 1.0m and 1.5m spacing of drain, respectively.

  • PDF

Numerical Study on the Design of Vertical Shaft based on the Falling Mechanism of Ore Particles in Glory Hole Mining Method (글로리 홀 채광법에서 광체의 낙하메커니즘을 통한 수갱 안전설계 연구)

  • Choi, Sung-Oong;Kim, Jaedong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.17-23
    • /
    • 2010
  • Recently, a large number of open-pit mines are planning to change their mining method to underground types because the environmental concerns and legal regulations are increased with a rise in the standard of living. The K silica mine, which is one of them and located in Kyunggi province, is planning the establishment of a vertical shaft which will be used for ore-pass channel in their new glory hole mining method. This vertical shaft will be designed to join with a horizontal gangway excavated from the ground level. In this new mining system, the excavated ore particles will be stored inside a shaft and transported out with a help of a conveyor belt. Therefore the hang-up of ore particles in a shaft, the control of gate at the bottom of a shaft, the installation of dog-leg at the gate should be investigated identically. In this study, the PFC-2D code which is one of the discrete element numerical methods has been applied to simulate the particle flow mechanism in a shaft, and the optimum mine design has been proposed to maximize the productivity and to minimize the system damage.

  • PDF

A Study of Forging Equipment for One Body Crankshaft of Medium Sized Marine Engine (선박 중형엔진 일체형 Crankshaft 제작용 형단조장치 기술개발에 관한 연구)

  • 윤성만
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.107-110
    • /
    • 1999
  • The purpose of this research is for the development of a new type forging equipment H.C.G(Hyundai Continuous Grain-flow) by using two virtual build-up tools rigid viscoplastic FEM and downsized plasticine experiment. This forging equipment consists of consecutive horizontal and vertical pressure while the traditional forging method consists of only vertical pressure. Using this method high quality crankshafts can be forged as it can maintain a continuous grain flow. The factors considered in the development of equipment are die geometry for flawless deformed shape die reaction forces stress/strain distributions and continuous material flow. We carried out several numerical simulations and downsized plasticine experiments for the proper design of the forging equipment. The validity of those simulation results is confirmed by checking with the actual test results. Based on these simulation results the proper design of the H.C.G for ging equipment is enabled.

  • PDF

Development of Wharf in Fishing Port with Tranquility Using the Arrays of Upright Perforated Plates ( 1 ) (직립 소파판을 이용한 어항 정온화 접안시설 개발 ( 1 ))

  • Kim, Hyeon-Ju;Cho, Il-Hyeong;Choi, Hak-Sun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.3
    • /
    • pp.286-293
    • /
    • 1996
  • This paper established the analytical model of sea surface oscilation of simple type fishing port with vertical wave absorbor. This model is composed by MAEM(Matched Asymptotic Expansion Method) for wave amplification in fishing port and EEM(Eigen - function Expansion Method) for wave absorbing characteristics against vertical perforated plates. Dimensionless porosity by adopting Darcy's law was introduced to evaluate wave absorbing characteristics of the perforated structure. Using the model, the efficiency of the vertical perforated plates was studied for fishing port tranqulity with number of plates, array method and plate intervals. Optimal design and arrangement of perforated plates can be applied to develop multipurpose fishing ports and villages.

  • PDF

Branch-and-bound method for solving n-ary vertical partitioning problems in physical design of database (데이타베이스의 물리적 설계에서 분지한계법을 이용한 n-ary 수직분할문제)

  • Yoon, Byung-Ik;Kim, Jae-Yern
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.4
    • /
    • pp.567-578
    • /
    • 1996
  • In relational databases the number of disk accesses depends on the amount of data transferred from disk to main memory for processing the transactions. N-ary vertical partitioning of the relation can often result in a decrease in the number of disk accesses, since not all attributes in a tuple are required by each transactions. In this paper, a 0-1 integer programming model for solving n-ary vertical partitioning problem minimizing the number of disk accesses is formulated and a branch-and-bound method is used to solve it. A preprocessing procedure reducing the number of variables is presented. The algorithm is illustrated with numerical examples and is shown to be computationally efficient. Numerical experiments reveal that the proposed method is more effective in reducing access costs than the existing algorithms.

  • PDF

Simple Design of Sand Drains Considering Smear Effect (교란효과를 고려한 샌드 드레인의 약식설계)

  • 유영삼;정충기
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.33-40
    • /
    • 1994
  • The effects of smear and well resistance should be taken into account for the design of sand drains. Practically, simple design, which employs the method using 112 reduced diameter of drains or assuming the coefficient of consolidation in horizontal direction equals to that in vertical direction, based on the theory neglecting these effects, has been used. In this study, the reliability of existing simple design methods as well as the influences of smear and well resistance was investigated with the equations proposed by Hansbo and Onoue. It is shown that the consolidation time is chiefly governed by the effect of smear for drains with highly permeable sands. For general soil condition and placing type of sand drain, consolidation time is underestimated for simple design wi어. 1/2 reduced diameter of drains, and it is overestimated for that with the assumption that the coefficient of consolidation in horizontal direction equals to that in vertical direction. Through the investigations on different reduced diameter, it was shown that simple design with 1/4 reduced diameter of drains yielded the reliable results with errors less than 6%.

  • PDF

The Method to Calculate the Walking Energy-Weight in ERAM Model to Analyze the 3D Vertical and Horizontal Spaces in a Building (3차원 수직·수평 건축공간분석을 위한 ERAM모델의 보행에너지 가중치 산정 연구)

  • Choi, Sung-Pil;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.3-14
    • /
    • 2018
  • The aim of this study is to propose a method for calculating the weight of walking energy in ERAM model by calculating it for the analysis of vertical and horizontal spaces in a building. Conventional theories on the space analysis in the field of architectural planning predict the pedestrian volume of network spaces in urban street or in two-dimensional plane within a building, however, for vertical and horizontal spaces in a building, estimates of the pedestrian volume by those theories are limited. Because in the spatial syntax and ERAM model have been applied weights such as the spatial depth, adjacent angles, and physical distances available only to the two-dimensional same layer or plane. Therefore, the following basic assumptions and analysis conditions in this study were established for deriving a predictor of pedestrian volume in vertical and horizontal spaces of a building. The basic premise of space analysis is not to address the relationship between the pedestrian volume and the spatial structure itself but to the properties of spatial structure connection that human beings experience. The analysis conditions in three-dimensional spaces are as follows : 1) Measurement units should be standardized on the same scale, and 2) The connection characteristics between spaces should influence the accessibility of human beings. In this regard, a factor of walking energy has the attributes to analyze the connection of vertical and horizontal spaces and satisfies the analysis conditions presented in this study. This study has two implications. First, this study has shown how to quantitatively calculate the walking energy after a factor of walking energy was derived to predict the pedestrian volume in vertical and horizontal spaces. Second, the method of calculating the walking energy can be applied to the weights of the ERAM model, which provided the theoretical basis for future studies to predict the pedestrian volume of vertical and horizontal spaces in a building.